素数筛的不同方法

出处:AcWing 868. 筛质数 - AcWinghttps://www.acwing.com/solution/content/68127/

前置知识:

  • 自然数按因数的个数分:质数、合数、00、11 四类
  • 最小的质数是 22,最小的合数是 44,连续的两个质数是 22、33
  • 每个合数都可以由几个质数相乘得到,即合数等于质数之积,质数相乘一定得到合数
  • 除了 22 和 55,其余质数的个位都是 1、3、7、91、3、7、9
  • 质数定理:当 n→∞n→∞ 时,1∼n1∼n 中的质数个数为 \frac{n}{ln(n)}

朴素筛: O(nlogn)

任何整数 xx 的倍数 2x,3x,⋯2x,3x,⋯ 都不可能是素数。我们可以从 22 往后扫描,将当前数的所有倍数全部筛掉,剩下没有被筛掉的数就是质数。

埃式筛:O(nloglogn)

若按照之前的筛法筛去一个整数的所有倍数,我们最终会留下一些质数,以 pp 为例,说明 pp 不是 2∼p−12∼p−1 内任何一个数的倍数,我们并不需要将 2∼p−12∼p−1 内所有的数依次枚举一遍,只要将其中的质数枚举一遍即可,因为合数等于质数之积。

线性筛:O(n)

埃氏筛存在一个缺陷,即对于一个合数,可能会被筛多次,例如 30=2×15=5×6…30=2×15=5×6…,我们改用其最小质因子去筛掉这个合数,就可以保证他只会被筛一次。

我们从小到大枚举所有质因子 primes[j]。

1、当出现 i % primes[j] == 0 时,primes[j] 一定是 i 的最小质因子,因此也一定是 primes[j] * i 的最小质因子。

2、当出现 i % primes[j] != 0 时,说明我们还尚未枚举到 i 的任何一个质因子,也就表示 primes[j] 小于 i 的任何一个质因子,这时 primes[j] 就一定是 primes[j] * i 的最小质因子。

可以发现无论如何,primes[j] 都一定是 primes[j] * i 的最小质因子,并且由于所要筛的质数在 2∼n2∼n 之间,因此合数最大为 nn,故 primes[j] * i 只需枚举到 n 即可,但由于 primes[j] * i 可能会溢出整数范围,故改成 primes[j] <= n / i 的形式。

#include <iostream>
#include <cstdio>
#include <algorithm>

using namespace std;
const int N = 1e6 + 10;
int primes[N], cnt;
bool st[N];

/*
//朴素筛,时间复杂度O(nlogn)
void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = i + i; j <= n; j += i ) st[j] = true;
    }
}

//埃式筛,时间复杂度O(nloglogn)
void get_prime(int n)
{
    for(int i = 2; i <= n; ++i)
    {
        if(!st[i])
            primes[cnt++] = i;
        for(int j = 0; primes[j] <= n / i; ++j)
        {
            st[primes[j] * i] = true;
            if(i % primes[j] == 0) break;
        }
    }
}
*/

//线性筛,时间复杂度O(n)
void get_prime(int n)
{
    for(int i = 2; i <= n; ++i)
    {
        if(!st[i])
            primes[cnt++] = i;
        for(int j = 0; primes[j] <= n / i; ++j)
        {
            st[primes[j] * i] = true;
            if(i % primes[j] == 0) break;
        }
    }
}

int main()
{
    int n;
    cin >> n;
    get_prime(n);
    cout << cnt << endl;
    return 0;
}

附上普通的分解质因数的代码(内涵算术基本定理):

#include <iostream>
#include <algorithm>
//时间复杂度介于O(logn)和O(sqrt(n))之间
using namespace std;

/*算术基本定理(也称唯一分解定理):
任何一个大于1的自然数N,都可以分解成一些质数的乘积(即某些质因子的乘积),并且在
不计次序的情况下,这种分解方式是唯一的。
即有公式: N = P1^a1 * P2^a2 * P3^a3* ...... Pn^an;
一个数中只存在一个大于sqrt(n)的质因数,因为如果有两个,那么乘出来
肯定大于N
*/
void divide(int n)
{
    for(int i = 2; i <= n / i; ++i)
        if(n % i == 0)
        {
            //这样子找是不会找出来合数的,因为是从最小的质数
            //2开始找的,所以如果找到一个合数,那么这个合数肯定
            //能被前面比它小的质数表达出来,而这些质数已经在n中
            //被除去了,也就是i肯定没有从2到i-1中的约数
            //然后看看这个质数在乘积中出现了几次
            int s = 0;
            while(n % i == 0)
            {
                n /= i;//把找到的质因数除掉,这样上方公式中的N中就没有
                       //这个质数了
                s++;
            }
            printf("%d %d\n", i, s);
        }
    if(n > 1)//看看有没有大于sqrt的质因数
        printf("%d %d\n", n, 1);
    printf("\n");
}

int main()
{
    int n;
    scanf("%d", &n);
    while(n--)
    {
        int x;
        scanf("%d", &x);
        divide(x);
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值