一共有 nn 个数,编号是 1∼n1∼n,最开始每个数各自在一个集合中。
现在要进行 mm 个操作,操作共有两种:
M a b
,将编号为 aa 和 bb 的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;Q a b
,询问编号为 aa 和 bb 的两个数是否在同一个集合中;
输入格式
第一行输入整数 nn 和 mm。
接下来 mm 行,每行包含一个操作指令,指令为 M a b
或 Q a b
中的一种。
输出格式
对于每个询问指令 Q a b
,都要输出一个结果,如果 aa 和 bb 在同一集合内,则输出 Yes
,否则输出 No
。
每个结果占一行。
数据范围
1≤n,m≤1051≤n,m≤105
输入样例:
4 5
M 1 2
M 3 4
Q 1 2
Q 1 3
Q 3 4
输出样例:
Yes
No
Yes
最重要的就是 find函数,是返回x的祖宗节点(加了路径压缩),p【x】 = x 的时候是根节点,只要它不是根节点,他就不会return。
#include<iostream>
using namespace std ;
const int N = 1e5 + 10 ;
int p[N] ;
int n , m ;
int find(int x)
{
if(p[x] != x) p[x] = find(p[x]);
return p[x] ;
}
int main()
{
cin >> n >> m ;
for(int i = 1 ; i <= n ; i++)
{
p[i]= i ;
}
while(m--)
{
char op[2] ;
int a ,b ;
scanf("%s %d %d" , op , &a , &b);
if(op[0] == 'M')
{
p[find(p[a])] = find(p[b]) ;
}
else
{
if(find(p[a]) == find(p[b]))cout << "Yes"<< endl ;
else cout << "No" << endl ;
}
}
return 0 ;
}