01背包,完全背包,多重背包问题,分组背包(包括一维的优化)-----看完一定能懂版

01背包问题

点击跳转至题目

基础代码:

#include<iostream>
using namespace std;
const int N = 1010 ;
int f[N][N];
int v[N] , w[N];
int main()
{
    int n,m;
    cin >> n >> m ;
    for(int i = 1 ; i <= n ; i++)
    {
        cin >> v[i] >> w[i];
    }
    for(int i = 1 ; i <= n ; i++)
    {
        for(int j = 0 ; j <= m ; j++)
        {
            f[i][j] = f[i - 1][j];
            if(j >= v[i]) f[i][j] = max(f[i][j],f[i-1][j-v[i]] + w[i]) ;
        }
    }
    cout << f[n][m];
    return 0;
}

一维优化代码(为什么转换成一维的时候,要从大到小)

for(int i = 1 ; i <= n ; i++)
    {
        for(int j = 0 ; j <= m ; j++)
        {
            f[i][j] = f[i - 1][j];
            if(j >= v[i]) f[i][j] = max(f[i][j],f[i-1][j-v[i]] + w[i]) ;
        }
    }

当单纯把 前面的i去掉而转换成一维的时候,上面的这行代码

if(j >= v[i]) f[i][j] = max(f[i][j],f[i-1][j-v[i]] + w[i]) ;

就会变成

if(j >= v[i]) f[i][j] = max(f[i][j],f[i][j-v[i]] + w[i]) ;
//  f[j] = max(f[j],f[j-v[i]] + w[i])

因为上面的j loop 是从小到大循环的,此时在i的循环中,先更新了 f[j-v[i]],所以这里是f[i][j-v[i],与之前公式不符,当j从大到小循环的时候,在i的循环中,f[j-v[i]]没有被先更新,所以是f[i-1][j-v[i]],所以这里应该用从大到小的顺序,而下面的完全背包,因为优化了结构,它的计算方程就是 f[i][j] = max(f[i][j],f[i][j-v[i]] + w[i]),所以它是从小到大的
一维代码:

#include<iostream>
using namespace std;
const int N = 1010 ;
int v[N] , w[N] , f[N];
int n , m ;
int main()
{
    cin >> n >> m ;
    for(int i = 1 ; i <= n ; i++) cin >> v[i] >> w[i] ;
    
    for(int i = 1 ; i <= n ; i++)
        for(int j = m ; j >= v[i]; j--)
            f[j] = max(f[j] , f[j-v[i]] + w[i]);
            
    cout << f[m];
    return 0;
}

完全背包问题

#include<iostream>
using namespace std;
const int N = 1010 ;
int n , m;
int v[N] , w[N] ;
int f[N][N];
int main()
{
    cin >> n >> m ;
    for(int i = 1 ; i <= n ; i++)
    {
        cin >> v[i] >> w[i] ;
    }
    for(int i = 1 ;  i <= n ; i++)
    {
        for(int j = 0 ; j <= m ; j++)
        {
            f[i][j] = f[i-1][j];
            if(j >= v[i]) f[i][j] = max( f[i][j] , f[i][j-v[i]] + w[i]) ;
        }
    }
    cout << f[n][m];
    return 0 ;
}

优化过程

f[i , j ] = max( f[i-1,j] , f[i-1,j-v]+w , f[i-1,j-2v]+2w , f[i-1,j-3v]+3w , …)
f[i , j-v]= max( f[i-1,j-v] , f[i-1,j-2v] + w , f[i-1,j-3v]+2*w , …)
由上两式,可得出如下递推关系:
f[i][j]=max(f[i,j-v]+w , f[i-1][j])

#include<iostream>
using namespace std;
const int N = 1010 ;
int v[N] , w[N] , f[N] ;
int n , m  ;
int main()
{
    cin >> n >> m ;
    for(int i = 1 ; i <= n ; i++) cin >> v[i] >> w[i] ;
    for(int i = 1 ; i <= n ; i++)
    {
        for(int j = v[i] ; j <= m ; j++)
        {
            f[j] = max(f[j] , f[j-v[i]] + w[i]);
        }
    }
    cout << f[m];
    return 0 ;
}

多重背包问题I

#include<iostream>
using namespace std;
const int N = 110; 
int f[N][N];
int a[N] , b[N] , c[N];
int n,v;
int main(){
    cin >> n >> v ;
    for(int i = 1 ; i <= n ; i++)
    {
        cin >> a[i] >> b[i] >> c[i];
    }
    for(int i = 1 ; i <= n ; i++)
    {
        for(int j = 0 ; j <= v ; j++)
        {
            f[i][j] = f[i-1][j];
            for(int k = 0 ; k <= c[i] && k * a[i] <= j ; k++)
            {
                f[i][j] = max(f[i][j] , f[i-1][j-k*a[i]] + k * b[i]) ;
            }
        }
    }
    cout << f[n][v];
    return 0 ;
}

一维优化:

#include<iostream>
using namespace std;
const int N = 110 ;
int v[N], w[N] , s[N];
int f[N];
int n , m ;
int main()
{
    cin >> n >> m ;
    for(int i = 1 ; i <= n ; i++) cin >> v[i] >> w[i] >> s[i];
    for(int i = 1;  i<= n ; i++)
    {
        for(int j = m ; j >= v[i] ; j--)
        {
            for(int k = 1 ; k <= s[i] && k * v[i] <= j ; k++)
            {
               f[j] = max(f[j] , f[j-k*v[i]] + (k * w[i]));
            }
        }
    }
    cout << f[m] ;
    return 0 ;
}

多重背包问题II

(这个还没来的及写,明天写qwq)
用二进制来理解,1+2+4+8+16+32+64 相当于 一个1xxxxxxx减去1的值,所以范围是0~64*2-1

#include<iostream>
using namespace std;
const int N = 24100 , M = 2010 ;
int f[M];
int n , m ;
int v[N],w[N],s[N];
int main()
{
    cin >> n >> m ;
    int cnt = 0 ;
    
    for(int i = 1 ; i <= n ; i++)
    {
        int a,b,s ;
        cin >> a >> b >> s;
        
        int k = 1;
        while(k <= s)
        {
            cnt++ ;
            v[cnt] = a * k ;
            w[cnt] = b * k ;
            s -= k ;
            k *= 2 ;
        }
        if(s > 0) 
        {
            cnt ++ ;
            v[cnt] = a * s;
            w[cnt] = b * s;
        }
    }
    
    n = cnt ;
    for(int i = 1 ; i <= n ; i++)
    {
        for(int j = m ; j >= v[i] ; j--)
        {
            f[j] = max(f[j] , f[j-v[i]] + w[i]);
        }
    }
    cout << f[m];
    return 0;
}

分组背包

acwing例题

#include<iostream>
using namespace std;
const int N = 110 ;
int v[N][N] , w[N][N]  ;
int t[N];
int f[N];
int n ,m ;
int main()
{
    cin >> n >> m ;
    for(int i = 1; i <= n ; i++)
    {
        cin >> t[i];
        for(int j = 1 ; j <= t[i] ; j++)
        {
            cin >> v[i][j] >> w[i][j];
        }
    }
    for(int i = 1 ; i <= n ; i++)
    {
        for(int j = m; j >= 0 ; j--)
        {
            for(int k = 1 ; k <= t[i] ; k++)
            {
                if(j >= v[i][k]) f[j] = max(f[j] ,f[j-v[i][k]] + w[i][k]) ;
            }
        }
    }
    cout << f[m];
    return 0 ;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三粒小金子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值