深度学习中关于pytorch安装是否需要安装CUDA Toolkit

        在安装pytorch时会显示的或者默认的安装pytorch-cuda,它是PyTorch 的运行时 CUDA 后端,仅包含运行所需的 CUDA 动态库。❌ 并不包含 nvcccuda.h 等用于编译 CUDA 扩展的开发工具链。

项目是否包含作用说明
pytorch-cuda✅ CUDA 动态库(.so)❌ 不含 nvcc只用于运行 PyTorch GPU 模型
CUDA Toolkit✅ nvcc + include + lib提供编译 .cu 扩展模块所需的完整工具链

        因此,你想运行调试pytorch代码,安装的pytorch-cuda只需要小于等于系统cuda驱动版本即可,而不需要系统上安装完全相同版本的 CUDA Toolkit,即可利用到GPU。

        但是当你使用编译带有 CUDA 扩展的 PyTorch 第三方库,比如:

  • torch_scattertorch_sparsetorch_clustertorch_spline_conv 等 PyG 扩展

  • 自定义写的 CUDA 算子(setup.py 里用 CUDAExtension

        就需要安装对应PyTorch CUDA 版本的 CUDA Toolkit(含编译器、头文件等),否则会出现版本不匹配或者编译失败。

安装CUDA Toolkit的常规步骤(以Ubuntu为例)

        去NVIDIA官网:CUDA Toolkit Archive

        选择合适版本(例如CUDA 10.2、11.3等),下载对应系统的 .run.deb 安装包。

        安装CUDA Toolkit(以 .run 包为例)

# 给安装文件可执行权限
chmod +x cuda_10.2.89_440.33.01_linux.run

# 运行安装程序
sudo ./cuda_10.2.89_440.33.01_linux.run

安装过程中注意:

  • 可以选择不安装驱动(一般选择不)

  • 只安装Toolkit和Samples即可。

  • 配置环境变量,示例如下。

配置环境变量 

~/.bashrc~/.zshrc 中添加:

export PATH=/usr/local/cuda-10.2/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH

然后执行:

source ~/.bashrc

验证安装

nvcc --version

看到版本信息即安装成功。

总结

关键点说明
系统驱动(NVIDIA Driver)需兼容你安装的CUDA Toolkit版本,驱动必须新于或等于Toolkit最低要求
CUDA Toolkit版本可以和驱动不完全一致,但需兼容,通常驱动版本更高没问题
安装建议安装CUDA Toolkit时建议不覆盖系统驱动(避免冲突)

两篇写的比较好的文章

显卡,显卡驱动,nvcc, cuda driver,cudatoolkit,cudnn到底是什么?

Pytorch 使用不同版本的 cuda

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值