- 博客(15)
- 收藏
- 关注
原创 高光谱特征波段选择:基于递归特征消除的方法
在高光谱成像技术的应用中,有效选择最具代表性的特征波段对提高分类或预测的性能起着至关重要的作用。本文介绍了一种基于递归特征消除(RFE)的高光谱特征波段选择方法,并提供了相应的Python实现。这种方法能够从大量光谱波段中筛选出最优的特征子集,这些特征代表着光谱中最关键的信息,有助于提高模型建立的准确性和效率。通过这种方法,研究人员可以更好地理解和利用高光谱数据,为农业、环境监测、地质勘探等领域的应用提供有力支持。接下来,我们将详细介绍代码实现及其关键部分。
2024-07-19 15:27:04 332
原创 Win环境下Ollama+OpenWebUI本地部署llama教程
本文将简单介绍如何在Windows环境下通过Ollama本地部署大语言模型(LLM),并通过OpenWebUI实现访问。
2024-07-18 13:59:52 1571
原创 Transformer中点积注意力的简单解释
这个点积的结果会告诉我们,对于当前正在处理的单词(Query),句子中的其他单词(Key)有多重要。这些权重矩阵是模型在训练过程中学习到的,它们帮助模型理解每个单词在不同上下文中的意义。首先,我们会把每个单词(“我”、“想”、“吃”、“汉堡”)转换成向量,这些向量就是模型的输入序列。最后,我们把每个Value向量乘以它对应的注意力权重,然后把所有结果加起来,得到最终的输出向量。这个过程对输入序列中的每个单词都会重复一次,这样我们就能得到一个新的输出序列,其中每个向量都是基于整个句子的上下文计算出来的。
2024-06-18 11:28:47 439
原创 光谱深度学习基础——pytorch和cuda的安装和配置
深度学习在高光谱建模的领域应用广泛,而PyTorch是目前最流行的深度学习框架之一。为了充分利用GPU加速深度学习模型的训练和推理,我们需要安装CUDA和cuDNN。本文以个人的4060 Ti为例,介绍如何安装CUDA 12.1、cuDNN以及基于CUDA 12.1的PyTorch。
2024-05-03 06:37:59 746 2
原创 基于Python的光谱分类建模算法——KNN(K近邻算法)
K近邻(K-Nearest Neighbor, KNN)算法是一种常用的监督学习分类算法,它的基本思想是如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。本文将介绍如何使用Python中的scikit-learn库实现KNN算法,并应用于高光谱数据分类任务。
2024-05-02 11:33:08 424 3
原创 数据清洗入门——新手必知必会
在大数据时代,数据已成为各行各业的重要资产。然而,原始数据往往存在着各种质量问题,如错误、不一致、缺失、冗余等,这些问题会对后续的数据分析和挖掘工作造成严重影响。因此,数据清洗就成为了数据处理流程中不可或缺的一个重要步骤。作为一名数据工作者,掌握数据清洗的基本知识和技能是非常有必要的。本文将为数据清洗入门者介绍入门阶段需要了解和掌握的主要内容,帮助大家快速了解数据清洗工作。数据清洗是数据分析和挖掘过程中的重要一环,数据工作者需要了解数据质量问题、掌握数据清洗流程、熟悉常用工具和技术等基础知识。
2024-05-02 07:14:25 804 2
原创 The unscrambler X 进行光谱PCA主成分分析
其中,Maximun components为主成分数量,根据实际数据集调整,然后,一直点next直至无法点时点finish,即完成主成分分析,并出现四个图,左上角即为主成分分析图。并在软件上方选择Tasks→Analyze→principal component analysis,进入此界面。直接进入主题,首先导入光谱数据集,以个人数据集为例,第一行为波段,最后一列为标签,具体导入操作参考。然后自行设置sample grouping将点分类并根据主成分分析图进行分析即可。导入后,如图,左键点击数据集。
2024-05-02 06:48:35 766 3
原创 光谱数据集划分(基于python)
本文介绍了高光谱数据集划分的三种常用方法:随机划分、SPXY算法划分和Kennard-Stone算法划分,并给出了相应的Python实现代码。这些方法可以帮助我们合理地划分数据集,有助后续的模型训练、建立和评估。在实际应用中,我们可以根据具体数据集来选择适合的划分方法。
2024-05-01 22:54:24 1537 1
原创 光谱SNV预处理——基于Python实现
SNV(Standard Normal Variate)预处理是一种常用的高光谱数据预处理方法,用于消除光谱数据中的散射效应和基线漂移等干扰因素,提高数据的建模性能。SNV预处理的基本思想是对每个样本的光谱数据进行标准化,使其均值为0,标准差为1。消除了光谱数据中的散射效应和基线漂移等干扰因素,提高了数据的可比性。对每个样本的每个波段,减去该样本的平均值,然后除以该样本的标准差。预处理后的数据具有零均值和单位方差,便于后续的建模和分析。对于每个样本的光谱数据,计算其所有波段的平均值和标准差。
2024-05-01 07:47:17 927
原创 高光谱特征波段选择算法——CARS算法
竞争适应性重加权采样(Competitive Adaptive Reweighted Sampling, CARS)是一种有效的光谱特征波段选择算法。其基本思想是通过蒙特卡洛采样和指数衰减函数,自适应地调整各波段的选择概率,最终选出对建模性能贡献最大的最优波段组合。
2024-05-01 07:18:09 3282 12
原创 基于Python的高光谱PLS-DA分类建模
具体来说,PLS-DA先将类别标签进行虚拟变量编码(如One-hot编码),然后将编码后的虚拟变量作为Y,原始光谱数据作为X,构建PLS回归模型。偏最小二乘判别分析(Partial Least Squares Discriminant Analysis, PLS-DA)是一种有监督的线性判别方法,它结合了偏最小二乘回归(PLS)和判别分析(DA)的优点,能够有效处理高维小样本、多重共线性等问题,在高光谱分类领域得到了广泛应用。绘制PLS-DA模型的ROC曲线和AUC值,直观评估模型的整体分类性能。
2024-05-01 07:05:04 944 1
原创 基于Python的高光谱elm分类建模算法
高光谱数据集划分为训练集和测试集两个csv文件导入,其中,csv文件中,第一行为高光谱波段,最后一列为分类标签。
2024-05-01 05:49:39 200
原创 高光谱预处理——基于The Unscrambler X
右键点击最后一列,选择Change Data Type-Category,再点击确定,将最后一列转换为类别标签(注意确定已将最后一列标签按类别填好)接着,以SNV预处理为例,在左侧区域右键点击导入的数据集,选择Transform-SNV,出现如下界面,并点击Define定义变量。现在就是SNV预处理后的高光谱数据了,其他预处理方式大同小异,在Transform内选择对应的预处理方式即可。拉到最右,左键选择标签列,输入变量名y,点击create。,输入变量x,并点击create,并点击ok确认。
2024-05-01 05:34:14 630
原创 基于Python的高光谱SVM分类建模
高光谱数据集分为训练集和测试集两个csv文件导入(代码最后一行),其中,csv文件中,第一行为高光谱波段,最后一列为分类标签。
2024-04-30 22:49:57 615 5
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人