习题 2-1 分析为什么平方损失函数不适用于分类问题 , 交叉熵损失函数不适用于回归问题.
平方损失函数经常用在预测标签y为实数值的任务中定义为:
首先我们要了解分类的概念。在一个二分类问题中y = { + 1 , − 1 } 在K分类问题中,y = { 1 , 2 , 3 , ⋅ ⋅ ⋅ , C } 可以看出分类问题输出的结果为离散的值。分类问题中的标签,是没有连续的概念的。每个标签之间的距离也是没有实际意义的。所以平方损失函数的值不能反应分类这个问题的优化程度。比如分类 1,2,3, 真实分类是1, 而被分类到2和3错误程度应该是一样的,但是明显当我们预测到2的时候是损失函数的值为1/2,预测到3的时候损失函数却为2,在相同的结果下却给出了不同的值,这对我们优化参数产生了误导。因此平方损失函数不适用于分类问题。
从平方损失函数运用到多分类场景下,可知平方函数对每一个输出结果都十分看重,而交叉熵损失函数值的正确的分类结果看重。该损失函数除了让正确分类变大,还会让错误分类都变得平均,但实际中后面这个调整是没有必要的,但是对于回归问题这样的考虑就显得重要了。因此交叉熵损失函数不适用于回归问题。
习题 2-12 对于一个三分类问题 , 数据集的真实标签和模型的预测标签如下 :
真实标签 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 |
预测标签 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 1 | 2 |
分别计算模型的精确率、召回率、F1值以及它们的宏平均和微平均.
混淆矩阵:
预测为真 | 预测为假 | |
类别为真 | 正确预测成真(True Positive,TP) | 错误预测为假(False Nagetive,FN) |
类别为假 | 错误预测为真(False Positive,FP) | 正确预测为假(True Nagetive,TN) |
精确率:
召回率:
F值:
宏平均:
微平均:
总结:学会了如何计算模型的精确率、召回率、F1值以及它们的宏平均和微平均,并且学会了如何使用CSDN的插入公式。