二分(整数二分、实数二分)

整数域二分

单调序列或单调函数中的查找方式。(终止条件:l=r)

解析

  • 注意终止边界、左右区间取舍。

(1)缩小范围:r=mid,l=mid+1,取中间值:mid=(l+r)>>1。

(2)缩小范围:l=mid,r=mid+r,取中间值:mid=(l+r+1)>>1。

第一种不会取到 r r r这个值,第二种不会取到 l l l。可以用来处理无解的情况。最初的二分区间从[1,n]扩大到[1,n+1]和[0,n],若最后二分终止在这个越界的下标上,则无解。

  • 右移运算向下取整,整数除法向零取整。

模板

// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:求左边界。
int bsearch_1(int l,int r){
    while(l<r){
        int mid=l+r>>1;
        if(check(mid))r=mid;//check()判断mid是否满足性质
        else l=mid+1;
    }
    return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:求右边界。
int bsearch_2(int l,int r){
    while(l<r){
        int mid=l+r+1>>1;
        if (check(mid))l=mid;
        else r=mid-1;
    }
    return l;
}

例题

789. 数的范围 - AcWing题库

#include<iostream>
using namespace std;
const int N=1e5+10;
int a[N];
int n,q,k;
int main(){
    cin>>n>>q;
    for(int i=0;i<n;i++)cin>>a[i];
    while(q--){
        int k;
        cin>>k;
        int l=0,r=n-1;
        while(l<r){
            int mid=l+r>>1;
            if(a[mid]>=k)r=mid;
            else l=mid+1;
        }
         
        if(a[l]!=k)cout<<"-1 -1"<<endl;
        else {
            cout<<l<<" ";
            l=0,r=n-1;
            while(l<r){
                int mid=l+r+1>>1;
                if(a[mid]<=k)l=mid;
                else r=mid-1;
            }
            cout<<l<<endl;
        }
    }
    return 0;
}

实数域二分

解析

  • 注意精度问题
    使用循环固定次数的二分方法解决精度问题。(精度比eps高)

模板

//固定循环次数
for(int i=0;i<100;i++){//求mid
    double mid=(l+r)/2;
    if(calc(mid))r=mid;
    else l=mid;
}
//eps精度
const double eps=1e-8;//一般将精度定为要求的后两位。
double l=-10000,r=10000;
while(r-l>eps){
    double mid=(l+r)/2;
    if(check(mid))r=mid;
    else l=mid;
}

例题

790. 数的三次方根 - AcWing题库

#include <iostream>
using namespace std;
int main(){
    double n;
    cin>>n;
    double l=-10000,r=10000;
    while(r-l>1e-8){
        double mid=(l+r)/2;
        if(mid*mid*mid>=n)r=mid;
        else l=mid;
    }
    printf("%.6lf",l);
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
分数阶差分方程理论 出版时间:2011年版 内容简介   分数微积分与分数微分方程发端于1695年Leibniz和L,hospital的通信对话,亦即315年前已提出变元增量为非整数次幂时相关的极限问题.所以,这里说的积分的次数与微分的阶数不一定是整数,而可以是任意实数甚至是复数的情形,但此后到1812年的一百多年间,虽然有Euler,Bernoulli等一大批数学家的关注,分数微积分与分数微分方程仍然只是数学界的一些议论和猜测而已.自从1812年Laplace用积分定义一个分数的导数开始到1974年间才有许多背景促进了陆陆续续的局部研究,并取得一些进展,其中Riemann引?的定义沿用至今。本分支系统而快速的发展是因为1974年以来由极其广泛的应用背景推动的.这几十年涌现了大量的论文、专著,举行了多次分数微积分与分数微分方程理论和应用的国际会议.美国“数学评论”(MR)的分类目录中已列出专项.同时,由于它在物理学中的应用,还引起了对经典物理定律,的杯葛和激烈辩论,呈现出一派欣欣向荣的兴旺局面,然而这一切基本上只限于分数微分方程,对与它相应的分数差分方程则鲜有学者问津,我们相信广泛开展分数差分方程的研究是势在必行的,因为它对理论和应用都十分重要,我们可以从两个不同的途径得到分数阶差分方程这一研究对象。 目录 总序 序言 前言 第一章 分数阶差分及分数阶和分的概念及其性质,莱及尼兹公式 第二章 分数阶和分及分数阶差分的Z变换公式 第三章 分数阶差分方程解的存在唯一性,解对初值的依赖性 第四章 显示解分数差分方程的方法 第五章 用待定系数法解(2,q)阶分数差方程 第六章 (k,q)分数阶差分方程的Z变换方法求解 第七章 Z变换法解线性常系数分数阶差分方程 第八章 序列差分方程理论 第九章 分数阶差分方程组(约当矩阵法) 第十章 分数阶Green函数 第十一章 用Adomian分解法解线性分数阶差分方程及方程组 第十二章 Weyl型分数阶差分及分数阶和分的概念及其性质,莱布尼兹公式 第十三章 实变量的分数阶差分方程 参考文献 后记

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值