又一个 Flux LoRA 画廊

之前介绍过 FLUX LoRA the Explorer,整理 24 款不同的 Flux LoRA ,今天的这个来自 Shakker-Labs 整理 FLUX LoRA Gallery,暂时包含了 7 款不同 LoRA,其中有之前很火的现实与插画融合,还有当下最火的游戏《黑神话悟空》。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
假设我们有一个简单的线性回归模型,我们要使用Flux库来训练它。我们可以按照以下步骤进行: 1. 创建一个模型: ```julia using Flux model = Chain(Dense(1, 10, sigmoid), Dense(10, 1)) ``` 这个模型有两个层,一个输入层和一个输出层。输入层有1个神经元,输出层有1个神经元,中间有10个神经元,并且使用Sigmoid激活函数。 2. 创建一些数据: ```julia x = rand(100, 1) y = 2x .+ 0.5 .+ randn(100, 1) * 0.1 ``` 这里我们生成了100个数据点,每个数据点有1个特征和1个标签。数据点的生成方式是 $y = 2x + 0.5 + \epsilon$,其中 $\epsilon$ 是一个标准差为0.1的高斯噪声。 3. 定义损失函数: ```julia loss(x, y) = Flux.mse(model(x), y) ``` 这里我们使用均方误差(MSE)作为损失函数。 4. 定义优化器: ```julia opt = Descent(0.1) ``` 这里我们使用梯度下降法作为优化器,学习率为0.1。 5. 训练模型: ```julia for i in 1:100 Flux.train!(loss, Flux.params(model), [(x, y)], opt) end ``` 这里我们训练了100次。在每一次迭代中,我们使用Flux.train!函数来更新模型的权重和偏差。Flux.params函数用于获取模型的参数,[(x,y)]是训练数据的元组列表。 完整代码如下: ```julia using Flux model = Chain(Dense(1, 10, sigmoid), Dense(10, 1)) x = rand(100, 1) y = 2x .+ 0.5 .+ randn(100, 1) * 0.1 loss(x, y) = Flux.mse(model(x), y) opt = Descent(0.1) for i in 1:100 Flux.train!(loss, Flux.params(model), [(x, y)], opt) end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值