#day5开始试图摸鱼

博客讲述了在学习数学分析过程中遇到的挑战,主要关注函数极限的性质,包括极限的唯一性、局部有界性和局部保号性,并简单介绍了复合极限运算。讨论了单侧极限的概念,它是理解数学分析的重要基础。尽管在时间管理上遇到困难,但实际学习效果良好。
摘要由CSDN通过智能技术生成

  还记得#day0的时候规划是每天15页,理论上讲,如果我每天能够抽出3h来的话,确实可以实现,因为其实课本上的内容并不多,但是我给加了太多附加条件,比如说纸质笔记、课本上题目完整过一道,还有就是博客总结,开始两天在周末,愿意花时间的话,还是没啥大问题的,但是周一(昨天,day5)就出问题了,当我试图完成我的规划时,同时还有一份ddl在等着周二早晨用,那么有点焦虑的心态就耗掉了很大一部分时间,我居然甜美的去刷B站了(老实说我并不是个二次元,B站已经很腻了),诶。于是做完肝到了十二点,才做了一节(五页左右。不过有一说一,再怎么水,实际做的时候效果还是蛮好的)
  情况呢就是这么个情况,那么收获是什么呢?主要day5的内容就是从数列极限推广到了函数极限后,利用数列极限的性质推导出函数极限的一些性质以及运算法则,其中比较重要的就是单侧极限的概念,这个东西用分段函数是很好理解的,也是理解数学分析的一个很好地垫脚石。
  无论如何还是归纳一下内容吧:
  极限唯一性:极限存在则其必然唯一
  局部有界性:在极限的领域内必然是比取之有限的
  局部保号性:在一定领域内极限值与函数值应该是同号的
  由于上述三条定理都是文字叙述的,也不做太多申明了,这个是比较浅显且易于理解的内容,另外就是运算法则了:基本来讲,加减运算是和代数运算一致的,只是等式间的变换是有逻辑的。
  比较难的一个内容就是复合极限运算了:f(x)=lim(φ(t)),然后lim(f(x)),这就要求如lim(φ(t0))=x0时,φ(t)在t0的邻域内不恒为x0,这是一个比较奇怪的点,以后再给解释吧,我也不太懂诶,保留疑惑。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值