YOLOv8最新改进系列:YOLOv8融合BiFPN网络,亲测显著涨点!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

YOLOv8最新改进系列:YOLOv8融合BiFPN网络,亲测显著涨点


链接在此

BiFPN网络

BiFPN 的主要思想:高效双向跨尺度连接和加权特征融合。

多尺度特征表示是目标检测的重点方向之一,作者认为其主要困难是如何有效地表示和处理多尺度特征。

早期的检测器通常直接根据从骨干网络中提取的金字塔特征层次结构进行预测 。
特征金字塔网络 (FPN)提出了一种自上而下的途径来组合多尺度特征。
基于FPN,PANet 在 FPN 之上添加了一个额外的自下而上的路径聚合网络;
NAS‑FPN [8]利用神经架构搜索来自动设计特征网络拓扑。虽然实现了更好的性能,但 NAS‑FPN 在搜索过程中需要数千 GPU 小时,并且生成的特征网络是不规则的,因此难以解释。
BiFPN:引入可学习的权重来学习不同输入特征的重要性,同时重复应用自上而下和自下而上的多尺度特征融合.
下图表示各类网络模型的结构:

在这里插入图片描述
( a ) FPN 引入自上而下的路径来融合从 3 级到 7 级(P3 ‑ P7)的多尺度特征;
( b ) PANet 在 FPN 之上添加了一个额外的自下而上的路径;
( c ) NAS‑FPN 使用神经架构搜索找到不规则的特征网络拓扑,然后重复应用相同的块;
( d ) BiFPN 双向跨尺度连接和加权特征融合,具有更好的准确性和效率权衡。

简单了解过后,我们开始改进!
提示:以下是本篇文章改进内容,下面案例可供参考

一、替换yaml文件

改进后的文件如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat_BiFPN, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat_BiFPN, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat_BiFPN, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)


二、新建模块代码

在nn文件夹中新建bifpn.py文件

import math

import numpy as np
import torch
import torch.nn as nn



class Concat_BiFPN(nn.Module):
    def __init__(self, dimension=1):
        super(Concat_BiFPN, self).__init__()
        self.d = dimension
        self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.epsilon = 0.0001
 
    def forward(self, x):
        w = self.w
        weight = w / (torch.sum(w, dim=0) + self.epsilon)  # 将权重进行归一化
        # Fast normalized fusion
        x = [weight[0] * x[0], weight[1] * x[1]]
        return torch.cat(x, self.d)

三、替换tasks.py文件

在nn文件夹中找到tasks.py文件,进行内容上的替换即可

# Ultralytics YOLO 🚀, AGPL-3.0 license

import contextlib
from copy import deepcopy
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn

from ultralytics.nn.modules import (AIFI, C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x,
                                    Classify, Concat, Conv, Conv2, ConvTranspose, Detect, DWConv, DWConvTranspose2d,
                                    Focus, GhostBottleneck, GhostConv, HGBlock, HGStem, Pose, RepC3, RepConv,
                                    RTDETRDecoder, Segment)
from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load
from ultralytics.utils.checks import check_requirements, check_suffix, check_yaml
from ultralytics.utils.loss import v8ClassificationLoss, v8DetectionLoss, v8PoseLoss, v8SegmentationLoss
from ultralytics.utils.plotting import feature_visualization
from ultralytics.utils.torch_utils import (fuse_conv_and_bn, fuse_deconv_and_bn, initialize_weights, intersect_dicts,
                                           make_divisible, model_info, scale_img, time_sync)
from ultralytics.nn.qlhnet import ShuffleNetV2, Conv_maxpool
from ultralytics.nn.se import SEAttention
from ultralytics.nn.bifpn import Concat_BiFPN
try:
    import thop
except ImportError:
    thop = None


class BaseModel(nn.Module):
    """
    The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family.
    """

    def forward(self, x, *args, **kwargs):
        """
        Forward pass of the model on a single scale.
        Wrapper for `_forward_once` method.

        Args:
            x (torch.Tensor | dict): The input image tensor or a dict including image tensor and gt labels.

        Returns:
            (torch.Tensor): The output of the network.
        """
        if isinstance(x, dict):  # for cases of training and validating while training.
            return self.loss(x, *args, **kwargs)
        return self.predict(x, *args, **kwargs)

    def predict(self, x, profile=False, visualize=False, augment=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.
            augment (bool): Augment image during prediction, defaults to False.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        if augment:
            return self._predict_augment(x)
        return self._predict_once(x, profile, visualize)

    def _predict_once(self, x, profile=False, visualize=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

    def _predict_augment(self, x):
        """Perform augmentations on input image x and return augmented inference."""
        LOGGER.warning(f'WARNING ⚠️ {self.__class__.__name__} does not support augmented inference yet. '
                       f'Reverting to single-scale inference instead.')
        return self._predict_once(x)

    def _profile_one_layer(self, m, x, dt):
        """
        Profile the computation time and FLOPs of a single layer of the model on a given input.
        Appends the results to the provided list.

        Args:
            m (nn.Module): The layer to be profiled.
            x (torch.Tensor): The input data to the layer.
            dt (list): A list to store the computation time of the layer.

        Returns:
            None
        """
        c = m == self.model[-1] and isinstance(x, list)  # is final layer list, copy input as inplace fix
        flops = thop.profile(m, inputs=[x.copy() if c else x], verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")
        LOGGER.info(f'{dt[-1]:10.2f} {flops:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    def fuse(self, verbose=True):
        """
        Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the
        computation efficiency.

        Returns:
            (nn.Module): The fused model is returned.
        """
        if not self.is_fused():
            for m in self.model.modules():
                if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, 'bn'):
                    if isinstance(m, Conv2):
                        m.fuse_convs()
                    m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                    delattr(m, 'bn')  # remove batchnorm
                    m.forward = m.forward_fuse  # update forward
                if isinstance(m, ConvTranspose) and hasattr(m, 'bn'):
                    m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn)
                    delattr(m, 'bn')  # remove batchnorm
                    m.forward = m.forward_fuse  # update forward
                if isinstance(m, RepConv):
                    m.fuse_convs()
                    m.forward = m.forward_fuse  # update forward
            self.info(verbose=verbose)

        return self

    def is_fused(self, thresh=10):
        """
        Check if the model has less than a certain threshold of BatchNorm layers.

        Args:
            thresh (int, optional): The threshold number of BatchNorm layers. Default is 10.

        Returns:
            (bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise.
        """
        bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k)  # normalization layers, i.e. BatchNorm2d()
        return sum(isinstance(v, bn) for v in self.modules()) < thresh  # True if < 'thresh' BatchNorm layers in model

    def info(self, detailed=False, verbose=True, imgsz=640):
        """
        Prints model information

        Args:
            detailed (bool): if True, prints out detailed information about the model. Defaults to False
            verbose (bool): if True, prints out the model information. Defaults to False
            imgsz (int): the size of the image that the model will be trained on. Defaults to 640
        """
        return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz)

    def _apply(self, fn):
        """
        Applies a function to all the tensors in the model that are not parameters or registered buffers.

        Args:
            fn (function): the function to apply to the model

        Returns:
            A model that is a Detect() object.
        """
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, (Detect, Segment)):
            m.stride = fn(m.stride)
            m.anchors = fn(m.anchors)
            m.strides = fn(m.strides)
        return self

    def load(self, weights, verbose=True):
        """
        Load the weights into the model.

        Args:
            weights (dict | torch.nn.Module): The pre-trained weights to be loaded.
            verbose (bool, optional): Whether to log the transfer progress. Defaults to True.
        """
        model = weights['model'] if isinstance(weights, dict) else weights  # torchvision models are not dicts
        csd = model.float().state_dict()  # checkpoint state_dict as FP32
        csd = intersect_dicts(csd, self.state_dict())  # intersect
        self.load_state_dict(csd, strict=False)  # load
        if verbose:
            LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights')

    def loss(self, batch, preds=None):
        """
        Compute loss

        Args:
            batch (dict): Batch to compute loss on
            preds (torch.Tensor | List[torch.Tensor]): Predictions.
        """
        if not hasattr(self, 'criterion'):
            self.criterion = self.init_criterion()

        preds = self.forward(batch['img']) if preds is None else preds
        return self.criterion(preds, batch)

    def init_criterion(self):
        raise NotImplementedError('compute_loss() needs to be implemented by task heads')


class DetectionModel(BaseModel):
    """YOLOv8 detection model."""

    def __init__(self, cfg='yolov8n.yaml', ch=3, nc=None, verbose=True):  # model, input channels, number of classes
        super().__init__()
        self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg)  # cfg dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override YAML value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose)  # model, savelist
        self.names = {i: f'{i}' for i in range(self.yaml['nc'])}  # default names dict
        self.inplace = self.yaml.get('inplace', True)

        # Build strides
        m = self.model[-1]  # Detect()
        if isinstance(m, (Detect, Segment, Pose)):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose)) else self.forward(x)
            m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forward
            self.stride = m.stride
            m.bias_init()  # only run once
        else:
            self.stride = torch.Tensor([32])  # default stride for i.e. RTDETR

        # Init weights, biases
        initialize_weights(self)
        if verbose:
            self.info()
            LOGGER.info('')

    def _predict_augment(self, x):
        """Perform augmentations on input image x and return augmented inference and train outputs."""
        img_size = x.shape[-2:]  # height, width
        s = [1, 0.83, 0.67]  # scales
        f = [None, 3, None]  # flips (2-ud, 3-lr)
        y = []  # outputs
        for si, fi in zip(s, f):
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = super().predict(xi)[0]  # forward
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, -1), None  # augmented inference, train

    @staticmethod
    def _descale_pred(p, flips, scale, img_size, dim=1):
        """De-scale predictions following augmented inference (inverse operation)."""
        p[:, :4] /= scale  # de-scale
        x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim)
        if flips == 2:
            y = img_size[0] - y  # de-flip ud
        elif flips == 3:
            x = img_size[1] - x  # de-flip lr
        return torch.cat((x, y, wh, cls), dim)

    def _clip_augmented(self, y):
        """Clip YOLOv5 augmented inference tails."""
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4 ** x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[-1] // g) * sum(4 ** x for x in range(e))  # indices
        y[0] = y[0][..., :-i]  # large
        i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][..., i:]  # small
        return y

    def init_criterion(self):
        return v8DetectionLoss(self)


class SegmentationModel(DetectionModel):
    """YOLOv8 segmentation model."""

    def __init__(self, cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True):
        """Initialize YOLOv8 segmentation model with given config and parameters."""
        super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

    def init_criterion(self):
        return v8SegmentationLoss(self)


class PoseModel(DetectionModel):
    """YOLOv8 pose model."""

    def __init__(self, cfg='yolov8n-pose.yaml', ch=3, nc=None, data_kpt_shape=(None, None), verbose=True):
        """Initialize YOLOv8 Pose model."""
        if not isinstance(cfg, dict):
            cfg = yaml_model_load(cfg)  # load model YAML
        if any(data_kpt_shape) and list(data_kpt_shape) != list(cfg['kpt_shape']):
            LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}")
            cfg['kpt_shape'] = data_kpt_shape
        super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

    def init_criterion(self):
        return v8PoseLoss(self)


class ClassificationModel(BaseModel):
    """YOLOv8 classification model."""

    def __init__(self, cfg='yolov8n-cls.yaml', ch=3, nc=None, verbose=True):
        """Init ClassificationModel with YAML, channels, number of classes, verbose flag."""
        super().__init__()
        self._from_yaml(cfg, ch, nc, verbose)

    def _from_yaml(self, cfg, ch, nc, verbose):
        """Set YOLOv8 model configurations and define the model architecture."""
        self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg)  # cfg dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override YAML value
        elif not nc and not self.yaml.get('nc', None):
            raise ValueError('nc not specified. Must specify nc in model.yaml or function arguments.')
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose)  # model, savelist
        self.stride = torch.Tensor([1])  # no stride constraints
        self.names = {i: f'{i}' for i in range(self.yaml['nc'])}  # default names dict
        self.info()

    @staticmethod
    def reshape_outputs(model, nc):
        """Update a TorchVision classification model to class count 'n' if required."""
        name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1]  # last module
        if isinstance(m, Classify):  # YOLO Classify() head
            if m.linear.out_features != nc:
                m.linear = nn.Linear(m.linear.in_features, nc)
        elif isinstance(m, nn.Linear):  # ResNet, EfficientNet
            if m.out_features != nc:
                setattr(model, name, nn.Linear(m.in_features, nc))
        elif isinstance(m, nn.Sequential):
            types = [type(x) for x in m]
            if nn.Linear in types:
                i = types.index(nn.Linear)  # nn.Linear index
                if m[i].out_features != nc:
                    m[i] = nn.Linear(m[i].in_features, nc)
            elif nn.Conv2d in types:
                i = types.index(nn.Conv2d)  # nn.Conv2d index
                if m[i].out_channels != nc:
                    m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)

    def init_criterion(self):
        """Compute the classification loss between predictions and true labels."""
        return v8ClassificationLoss()


class RTDETRDetectionModel(DetectionModel):

    def __init__(self, cfg='rtdetr-l.yaml', ch=3, nc=None, verbose=True):
        super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose)

    def init_criterion(self):
        """Compute the classification loss between predictions and true labels."""
        from ultralytics.models.utils.loss import RTDETRDetectionLoss

        return RTDETRDetectionLoss(nc=self.nc, use_vfl=True)

    def loss(self, batch, preds=None):
        if not hasattr(self, 'criterion'):
            self.criterion = self.init_criterion()

        img = batch['img']
        # NOTE: preprocess gt_bbox and gt_labels to list.
        bs = len(img)
        batch_idx = batch['batch_idx']
        gt_groups = [(batch_idx == i).sum().item() for i in range(bs)]
        targets = {
            'cls': batch['cls'].to(img.device, dtype=torch.long).view(-1),
            'bboxes': batch['bboxes'].to(device=img.device),
            'batch_idx': batch_idx.to(img.device, dtype=torch.long).view(-1),
            'gt_groups': gt_groups}

        preds = self.predict(img, batch=targets) if preds is None else preds
        dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta = preds if self.training else preds[1]
        if dn_meta is None:
            dn_bboxes, dn_scores = None, None
        else:
            dn_bboxes, dec_bboxes = torch.split(dec_bboxes, dn_meta['dn_num_split'], dim=2)
            dn_scores, dec_scores = torch.split(dec_scores, dn_meta['dn_num_split'], dim=2)

        dec_bboxes = torch.cat([enc_bboxes.unsqueeze(0), dec_bboxes])  # (7, bs, 300, 4)
        dec_scores = torch.cat([enc_scores.unsqueeze(0), dec_scores])

        loss = self.criterion((dec_bboxes, dec_scores),
                              targets,
                              dn_bboxes=dn_bboxes,
                              dn_scores=dn_scores,
                              dn_meta=dn_meta)
        # NOTE: There are like 12 losses in RTDETR, backward with all losses but only show the main three losses.
        return sum(loss.values()), torch.as_tensor([loss[k].detach() for k in ['loss_giou', 'loss_class', 'loss_bbox']],
                                                   device=img.device)

    def predict(self, x, profile=False, visualize=False, batch=None, augment=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False
            batch (dict): A dict including gt boxes and labels from dataloader.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt = [], []  # outputs
        for m in self.model[:-1]:  # except the head part
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        head = self.model[-1]
        x = head([y[j] for j in head.f], batch)  # head inference
        return x


class Ensemble(nn.ModuleList):
    """Ensemble of models."""

    def __init__(self):
        """Initialize an ensemble of models."""
        super().__init__()

    def forward(self, x, augment=False, profile=False, visualize=False):
        """Function generates the YOLOv5 network's final layer."""
        y = [module(x, augment, profile, visualize)[0] for module in self]
        # y = torch.stack(y).max(0)[0]  # max ensemble
        # y = torch.stack(y).mean(0)  # mean ensemble
        y = torch.cat(y, 2)  # nms ensemble, y shape(B, HW, C)
        return y, None  # inference, train output


# Functions ------------------------------------------------------------------------------------------------------------


@contextlib.contextmanager
def temporary_modules(modules=None):
    """
    Context manager for temporarily adding or modifying modules in Python's module cache (`sys.modules`).

    This function can be used to change the module paths during runtime. It's useful when refactoring code,
    where you've moved a module from one location to another, but you still want to support the old import
    paths for backwards compatibility.

    Args:
        modules (dict, optional): A dictionary mapping old module paths to new module paths.

    Example:
        ```python
        with temporary_modules({'old.module.path': 'new.module.path'}):
            import old.module.path  # this will now import new.module.path
        ```

    Note:
        The changes are only in effect inside the context manager and are undone once the context manager exits.
        Be aware that directly manipulating `sys.modules` can lead to unpredictable results, especially in larger
        applications or libraries. Use this function with caution.
    """
    if not modules:
        modules = {}

    import importlib
    import sys
    try:
        # Set modules in sys.modules under their old name
        for old, new in modules.items():
            sys.modules[old] = importlib.import_module(new)

        yield
    finally:
        # Remove the temporary module paths
        for old in modules:
            if old in sys.modules:
                del sys.modules[old]


def torch_safe_load(weight):
    """
    This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised,
    it catches the error, logs a warning message, and attempts to install the missing module via the
    check_requirements() function. After installation, the function again attempts to load the model using torch.load().

    Args:
        weight (str): The file path of the PyTorch model.

    Returns:
        (dict): The loaded PyTorch model.
    """
    from ultralytics.utils.downloads import attempt_download_asset

    check_suffix(file=weight, suffix='.pt')
    file = attempt_download_asset(weight)  # search online if missing locally
    try:
        with temporary_modules({
                'ultralytics.yolo.utils': 'ultralytics.utils',
                'ultralytics.yolo.v8': 'ultralytics.models.yolo',
                'ultralytics.yolo.data': 'ultralytics.data'}):  # for legacy 8.0 Classify and Pose models
            return torch.load(file, map_location='cpu'), file  # load

    except ModuleNotFoundError as e:  # e.name is missing module name
        if e.name == 'models':
            raise TypeError(
                emojis(f'ERROR ❌️ {weight} appears to be an Ultralytics YOLOv5 model originally trained '
                       f'with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with '
                       f'YOLOv8 at https://github.com/ultralytics/ultralytics.'
                       f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
                       f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")) from e
        LOGGER.warning(f"WARNING ⚠️ {weight} appears to require '{e.name}', which is not in ultralytics requirements."
                       f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future."
                       f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to "
                       f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")
        check_requirements(e.name)  # install missing module

        return torch.load(file, map_location='cpu'), file  # load


def attempt_load_weights(weights, device=None, inplace=True, fuse=False):
    """Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a."""

    ensemble = Ensemble()
    for w in weights if isinstance(weights, list) else [weights]:
        ckpt, w = torch_safe_load(w)  # load ckpt
        args = {**DEFAULT_CFG_DICT, **ckpt['train_args']} if 'train_args' in ckpt else None  # combined args
        model = (ckpt.get('ema') or ckpt['model']).to(device).float()  # FP32 model

        # Model compatibility updates
        model.args = args  # attach args to model
        model.pt_path = w  # attach *.pt file path to model
        model.task = guess_model_task(model)
        if not hasattr(model, 'stride'):
            model.stride = torch.tensor([32.])

        # Append
        ensemble.append(model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval())  # model in eval mode

    # Module updates
    for m in ensemble.modules():
        t = type(m)
        if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
            m.inplace = inplace
        elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
            m.recompute_scale_factor = None  # torch 1.11.0 compatibility

    # Return model
    if len(ensemble) == 1:
        return ensemble[-1]

    # Return ensemble
    LOGGER.info(f'Ensemble created with {weights}\n')
    for k in 'names', 'nc', 'yaml':
        setattr(ensemble, k, getattr(ensemble[0], k))
    ensemble.stride = ensemble[torch.argmax(torch.tensor([m.stride.max() for m in ensemble])).int()].stride
    assert all(ensemble[0].nc == m.nc for m in ensemble), f'Models differ in class counts {[m.nc for m in ensemble]}'
    return ensemble


def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False):
    """Loads a single model weights."""
    ckpt, weight = torch_safe_load(weight)  # load ckpt
    args = {**DEFAULT_CFG_DICT, **(ckpt.get('train_args', {}))}  # combine model and default args, preferring model args
    model = (ckpt.get('ema') or ckpt['model']).to(device).float()  # FP32 model

    # Model compatibility updates
    model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS}  # attach args to model
    model.pt_path = weight  # attach *.pt file path to model
    model.task = guess_model_task(model)
    if not hasattr(model, 'stride'):
        model.stride = torch.tensor([32.])

    model = model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval()  # model in eval mode

    # Module updates
    for m in model.modules():
        t = type(m)
        if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment):
            m.inplace = inplace
        elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
            m.recompute_scale_factor = None  # torch 1.11.0 compatibility

    # Return model and ckpt
    return model, ckpt


def parse_model(d, ch, verbose=True):  # model_dict, input_channels(3)
    """Parse a YOLO model.yaml dictionary into a PyTorch model."""
    import ast

    # Args
    max_channels = float('inf')
    nc, act, scales = (d.get(x) for x in ('nc', 'activation', 'scales'))
    depth, width, kpt_shape = (d.get(x, 1.0) for x in ('depth_multiple', 'width_multiple', 'kpt_shape'))
    if scales:
        scale = d.get('scale')
        if not scale:
            scale = tuple(scales.keys())[0]
            LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
        depth, width, max_channels = scales[scale]

    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        if verbose:
            LOGGER.info(f"{colorstr('activation:')} {act}")  # print

    if verbose:
        LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<45}{'arguments':<30}")
    ch = [ch]
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m]  # get module
        for j, a in enumerate(args):
            if isinstance(a, str):
                with contextlib.suppress(ValueError):
                    args[j] = locals()[a] if a in locals() else ast.literal_eval(a)

        n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gain
        if m in (Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus,
                 BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3,SEAttention):
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)

            args = [c1, c2, *args[1:]]
            if m in (BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x, RepC3):
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is AIFI:
            args = [ch[f], *args]
        elif m in (HGStem, HGBlock):
            c1, cm, c2 = ch[f], args[0], args[1]
            args = [c1, cm, c2, *args[2:]]
            if m is HGBlock:
                args.insert(4, n)  # number of repeats
                n = 1
        elif m in [ShuffleNetV2, Conv_maxpool]:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(c2 * width, 8)
            args = [c1, c2, *args[1:]]
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m is Concat_BiFPN:
            c2 = sum(ch[x] for x in f)
        elif m in (Detect, Segment, Pose, RTDETRDecoder):
            args.append([ch[x] for x in f])
            if m is Segment:
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i, f, t  # attach index, 'from' index, type
        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)



def yaml_model_load(path):
    """Load a YOLOv8 model from a YAML file."""
    import re

    path = Path(path)
    if path.stem in (f'yolov{d}{x}6' for x in 'nsmlx' for d in (5, 8)):
        new_stem = re.sub(r'(\d+)([nslmx])6(.+)?$', r'\1\2-p6\3', path.stem)
        LOGGER.warning(f'WARNING ⚠️ Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.')
        path = path.with_name(new_stem + path.suffix)

    unified_path = re.sub(r'(\d+)([nslmx])(.+)?$', r'\1\3', str(path))  # i.e. yolov8x.yaml -> yolov8.yaml
    yaml_file = check_yaml(unified_path, hard=False) or check_yaml(path)
    d = yaml_load(yaml_file)  # model dict
    d['scale'] = guess_model_scale(path)
    d['yaml_file'] = str(path)
    return d


def guess_model_scale(model_path):
    """
    Takes a path to a YOLO model's YAML file as input and extracts the size character of the model's scale.
    The function uses regular expression matching to find the pattern of the model scale in the YAML file name,
    which is denoted by n, s, m, l, or x. The function returns the size character of the model scale as a string.

    Args:
        model_path (str | Path): The path to the YOLO model's YAML file.

    Returns:
        (str): The size character of the model's scale, which can be n, s, m, l, or x.
    """
    with contextlib.suppress(AttributeError):
        import re
        return re.search(r'yolov\d+([nslmx])', Path(model_path).stem).group(1)  # n, s, m, l, or x
    return ''


def guess_model_task(model):
    """
    Guess the task of a PyTorch model from its architecture or configuration.

    Args:
        model (nn.Module | dict): PyTorch model or model configuration in YAML format.

    Returns:
        (str): Task of the model ('detect', 'segment', 'classify', 'pose').

    Raises:
        SyntaxError: If the task of the model could not be determined.
    """

    def cfg2task(cfg):
        """Guess from YAML dictionary."""
        m = cfg['head'][-1][-2].lower()  # output module name
        if m in ('classify', 'classifier', 'cls', 'fc'):
            return 'classify'
        if m == 'detect':
            return 'detect'
        if m == 'segment':
            return 'segment'
        if m == 'pose':
            return 'pose'

    # Guess from model cfg
    if isinstance(model, dict):
        with contextlib.suppress(Exception):
            return cfg2task(model)

    # Guess from PyTorch model
    if isinstance(model, nn.Module):  # PyTorch model
        for x in 'model.args', 'model.model.args', 'model.model.model.args':
            with contextlib.suppress(Exception):
                return eval(x)['task']
        for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml':
            with contextlib.suppress(Exception):
                return cfg2task(eval(x))

        for m in model.modules():
            if isinstance(m, Detect):
                return 'detect'
            elif isinstance(m, Segment):
                return 'segment'
            elif isinstance(m, Classify):
                return 'classify'
            elif isinstance(m, Pose):
                return 'pose'

    # Guess from model filename
    if isinstance(model, (str, Path)):
        model = Path(model)
        if '-seg' in model.stem or 'segment' in model.parts:
            return 'segment'
        elif '-cls' in model.stem or 'classify' in model.parts:
            return 'classify'
        elif '-pose' in model.stem or 'pose' in model.parts:
            return 'pose'
        elif 'detect' in model.parts:
            return 'detect'

    # Unable to determine task from model
    LOGGER.warning("WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. "
                   "Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify', or 'pose'.")
    return 'detect'  # assume detect

小结

以上就是本文改进方法和内容。有需要改进后源码的可以私信我!免费!
另外需要一对一指导实验或者写作指导的朋友也可以私信我哦,可大大节省时间!冲冲冲!!!

欢迎评论区交流讨论。

  • 31
    点赞
  • 292
    收藏
    觉得还不错? 一键收藏
  • 26
    评论
Yolov7-tiny系列是一种用于目标检测网络结构,它在物体检测任务中具有较高的效率和准确率。为了进一步提升其性能,我们可以对其进行改进,引入bifpn结构的特征融合网络Bifpn结构是一种特征融合网络,它在多个尺度上进行特征融合,可以有效地提取目标的多尺度信息。我们将其与Yolov7-tiny结构进行结合,以获得更多有效的特征。 首先,我们在Yolov7-tiny的每个火箭头后面添加一层bifpn结构。这样,每个火箭头都可以从多个尺度的特征图中获取信息,并将其融合到一起。这种特征融合可以提高目标检测的准确性和鲁棒性。 其次,我们可以对bifpn结构进行一些改进。例如,我们可以引入注意力机制来控制特征的重要程度。注意力机制可以根据目标的重要性自适应地调整特征图的权重,从而提高关键目标的检测准确率。 此外,我们还可以利用多尺度的特征进行级联式的检测。即将不同尺度的特征图输入到级联式的分类器中,以进一步提升目标检测的性能。级联式的分类器可以对不同尺度的目标进行更准确的判断。 通过以上的改进改进Yolov7-tiny系列可以更好地融合更多有效的特征,提高目标检测的准确率。这将使该系列在实际应用中更加可靠和高效。当然,具体的改进方式还需要进一步的实验和验证,以确保其有效性和可行性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值