题目
leetcode 516.最长回文子序列
思路
动态规划
状态
dp[i][j]:字符串s下标范围[i,j]内的最长回文子序列长度
注意:下标范围为[i, j],意味着只有i <= j 的情况下dp[i][j]才有意义,否则dp[i][j] = 0
转移方程
状态转移方程都是从长度较短的子序列向长度较长的子序列转移
对 i <= j 进行分类讨论:
(1)i == j 时
此时子串中只有一个字符,一定是回文子串,因此dp[i][j] = 1
(2)i < j 时
对于一个新的范围[i, j],需要对新的起点和终点字符进行判断:
i)s[I] == s[j]
首尾满足回文定义,则现最长子序列长度在原来最大长度的基础上 + 2
即 dp[i][j] = dp[i+1][j−1]+2
ii) s[I] != s[j]
首尾不满足回文定义,现最长子序列长度为缩短一个字符时的长度(去掉首或者尾)
即dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
注意:在求dp[i][j]时,需要用到dp[i+1][j]或者dp[i][j - 1]或者dp[i+1][j-1],即需要用到后面的值,因此需要从后往前遍历i(子串的起始点)。
AC代码
class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>> dp(n, vector<int>(n, 0));
for(int i = n - 1; i >= 0; i--) {
for(int j = i; j < n; j++) {
if(i == j)
dp[i][j] = 1;
else {
if(s[i] == s[j])
dp[i][j] = dp[i + 1][j - 1] + 2;
else
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][n - 1];
}
};