2021-11-24 leetcode 动态规划 516.最长回文子序列 c++

题目

leetcode 516.最长回文子序列
请添加图片描述

思路

动态规划

状态

dp[i][j]:字符串s下标范围[i,j]内的最长回文子序列长度
注意:下标范围为[i, j],意味着只有i <= j 的情况下dp[i][j]才有意义,否则dp[i][j] = 0

转移方程

状态转移方程都是从长度较短的子序列向长度较长的子序列转移
i <= j 进行分类讨论:

(1)i == j 时
此时子串中只有一个字符,一定是回文子串,因此dp[i][j] = 1

(2)i < j 时
对于一个新的范围[i, j],需要对新的起点和终点字符进行判断:

i)s[I] == s[j]
首尾满足回文定义,则现最长子序列长度在原来最大长度的基础上 + 2
dp[i][j] = dp[i+1][j−1]+2

ii) s[I] != s[j]
首尾不满足回文定义,现最长子序列长度为缩短一个字符时的长度(去掉首或者尾)
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])

注意:在求dp[i][j]时,需要用到dp[i+1][j]或者dp[i][j - 1]或者dp[i+1][j-1],即需要用到后面的值,因此需要从后往前遍历i(子串的起始点)。

AC代码

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        int n = s.size();
        vector<vector<int>> dp(n, vector<int>(n, 0));
        for(int i = n - 1; i >= 0; i--) {
            for(int j = i; j < n; j++) {
                if(i == j)
                    dp[i][j] = 1;
                else {
                    if(s[i] == s[j])
                        dp[i][j] = dp[i + 1][j - 1] + 2;
                    else
                        dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][n - 1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聪明的Levi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值