快数幂算法(南昌理工学院)

这篇博客介绍了快速幂运算的原理及其在模运算中的应用,包括如何使用快速幂计算两个数在模意义下的乘法和求解模逆元。通过实例展示了两种不同的实现方法,代码简洁高效,时间复杂度为O(log₂N),大大提高了计算效率。适合对算法和数学感兴趣,尤其是进行数论或加密算法研究的读者。
摘要由CSDN通过智能技术生成

预备知识:
ab%p=((a%p)b)%p
(a+b)%p=(a%p+b)%p
(a
b)%c = ((a%c)
(b%c))%c

快速幂就是快速求一个数的幂

两个整数a,b,求a^b

把b分解成几个2的次方的和,然后就相当于做一个指数乘法

比如说2^11

11=2^ 3+2^ 1+2^0

ans=2^ (2^ 3+2^ 1+2^ 0)=2^ (2^ 3)*2^ (2^ 1)*2^ (2^0)

快速幂从字面上来讲就是快速算底数的n次幂。其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高
下面两个公式在代码中会用到

例题
https://www.acwing.com/problem/content/description/91/题目链接。
在这里插入图片描述
方法一

#include<iostream>

using namespace std;

typedef long long LL;

int qmi(int a,int b,int p)
{
	int res=1%p;//防止p为1的情况发生,此时的余数为零
	while(b)
	{
		if(b&1) res=(LL)res*a%p;
		a=(LL)a*a%p;
		b>>=1;
	 } 
	 return res;
}
int main()
{
	int a,b,p;
	cin>>a>>b>>p;
	cout<<qmi(a,b,p)<<endl;//qmi代表快速幂。
	return 0;
}

方法二

#include<iostream>

using namespace std;

int main()
{
	long long a, b, p, res=1;
	cin >> a >> b >> p;
	while (b)
	{
		if (b & 1)res = res * a % p;//
		b >>=1 ;
		a = a * a % p;
	}
	cout << res%p;//控制数据的大小。
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值