今天小羊更新的是最近复现的SCI论文,我将会分三次来进行介绍。本次文章主要讲解DMSP/OLS数据下载以及处理。
一、引言(部分)
经济的快速发展需要更好的监测和预测方法。国内生产总值(GDP)被广泛视为衡量一个国家或地区可持续经济发展的主要指标之一。它为区域经济发展和制定可持续发展战略提供了新的基础,以预测不同规模的经济发展。GDP数据主要来自国家统计局或其他行政部门的调查。尽管它们具有权威性,但它们有内在的局限性(例如,“注水”和统计数据方法带来的不确定性)。NTL图像提供了从空间直接观察人类活动的独特机会,使得绘制城市区域、估计人口和城市化以及监测灾害和冲突等许多应用成为可能。同时,发现NTL与GDP之间存在很强的相关性,使利用NTL来构建GDP预测模型成为一种可能。现有的GDP预测模型,研究往往集中在省级和市级的角度,很少有研究在国家层面上进行GDP预测。本研究旨在通过对中国所有省份进行GDP预测来填补这一空白。
二、数据下载
- DMSP/OLS数据下载网址:
- 全国矢量边界图(不包含十段线)
链接:https://pan.baidu.com/s/1E1TcHUt2-dR_d4w0AtI_WQ
提取码:0946
三、数据处理
图 1 所示为未经校正的中国区域的所有亮值像元的 DN 值总和( totalDN value,TDV) 。可以看出:
①同一年份的数据可由不同传感器进行获取,且不同传感器获取的亮值像元总数量不一致、总 DN 值不一致;
②同一传感器获取的不同年份的像元总数量、总 DN 值存在异常波动;
③由于以上两个问题的存在,导致多期夜间灯光影像间数据不连续、不可比;
④由于传感器光谱分辨率的限制,使得城市中心区域的像元值集聚饱和,DN 值最大为 63,使得城市中心地带的差异不明显。
TDV 的计算公式为:
式中,DNi 表示 i 像元的 DN 值; Ni 表示 i 像元的数量。
图1 未校正中国区域的TDV
1、TDN数据统计
那么以上的数据TDV是怎么统计出来的呢?我们可以用我们的老朋友模型构建器。通过掩【Spatial analyst】-【提取分析】-【按掩膜提取】将中国区域提取出来。然后利用【投影栅格】将其投影为Krassovsky_1940_Albers(更适合中国区域)。由于需要构建属性表来统计DN像元值,那么就需要利用【以表格显示分区统计】工具,但是使用这个工具的前提是,将数据转换为整型。因此需要使用【分析工具】-【数学分析】-【转为整型】来实现。并在表格中添加浮点型TDV字段。
图2模型构建器统计TDV
属性表构建完成后,在利用字段计算器键入一下表达式求取TDV,然后在对TDV字段进行统计。依照上述办法来完成1992-2013年的数据统计。
2、相互校正与饱和校正
将 1992—2013 年的 34 期待校正的稳定灯光影像与辐射定标产品数据中的 2006 年 F16 传感器的数据进行相互校正、饱和校正。利用RSR校正模型进行校正,校正参数如下表所示
式中,DN 表示校正前的亮度值; a、b、c 为回归系数; DNcorrect表示校正后的 DN 值。
年份 | a | b | c | R2 | 年份 | a | b | c | R2 | ||
F10 | 1992 | 0.036 | 0.337 | 2.581 | 0.85 | F14 | 2001 | 0.032 | 0.56 | 0.487 | 0.869 |
1993 | 0.045 | 0.334 | 2.15 | 0.85 | 2002 | 0.023 | 0.631 | 0.356 | 0.888 | ||
1994 | 0.039 | 0.518 | 1.252 | 0.85 | 2003 | 0.02 | 1.173 | -0.215 | 0.855 | ||
F12 | 1994 | 0.039 | 0.599 | 0.277 | 0.854 | F15 | 2004 | 0.024 | 1.146 | -0.153 | 0.901 |
1995 | 0.034 | 0.513 | 0.485 | 0.851 | 2005 | 0.026 | 0.872 | 0.123 | 0.855 | ||
1996 | 0.037 | 0.479 | 0.511 | 0.862 | 2006 | 0.015 | 1.076 | -0.081 | 0.894 | ||
1997 | 0.03 | 0.56 | 0.413 | 0.877 | 2007 | 0.018 | 0.977 | 0.086 | 0.892 | ||
1998 | 0.027 | 0.511 | 0.481 | 0.876 | 2004 | 0.022 | 0.809 | 0.231 | 0.866 | ||
1999 | 0.029 | 0.502 | 0.454 | 0.866 | 2005 | 0.022 | 0.919 | 0.096 | 0.887 | ||
F14 | 1997 | 0.035 | 0.893 | 0.165 | 0.863 | F16 | 2006 | 0.019 | 0.92 | 0.1 | 0.924 |
1998 | 0.036 | 0.731 | 0.229 | 0.865 | 2007 | 0.019 | 0.701 | 0.31 | 0.888 | ||
1999 | 0.028 | 0.901 | 0.124 | 0.863 | 2008 | 0.012 | 0.625 | 0.381 | 0.868 | ||
2000 | 0.024 | 0.606 | 0.346 | 0.873 | 2009 | 0.018 | 0.512 | 0.482 | 0.872 | ||
2001 | 0.021 | 0.78 | 0.188 | 0.862 | F18 | 2010 | 0.021 | 0.146 | 1.525 | 0.851 | |
2002 | 0.017 | 1.018 | -0.113 | 0.876 | 2011 | 0.02 | 0.51 | 0.901 | 0.851 | ||
2003 | 0.017 | 1.096 | -0.101 | 0.89 | 2012 | 0.017 | 0.483 | 0.508 | 0.852 | ||
2000 | 0.028 | 0.578 | 0.485 | 0.878 | 2013 | 0.016 | 0.271 | 2.68 | 0.85 |
利用【spatial analyst 工具】-【地图代数】-【栅格计算器】,进行计算,如图以2006年为例进行计算。
3、年内融合
不同传感器获取的同一年份的数据不一致,为了充分利用各独立传感器获取的数据,同时为了能够解决传感器获取数据的不连续问题,研究按照下式,对相互校正及饱和校正后的部分影像进行年内融合。需要进行年内融合的年份包括: 1994、1997—2007 年。年内融合包括: ①两幅影像对应的某像元的 DN 值,均为 0,则该像元的 DN 值为 0; ②否则,取二者的平均值作为该像元的 DN 值。
式中,n = 1994,1997,1998,…,2007; DNa ( n,i) 、DNb ( n,i) 分别表示相互校正、饱和校正后 n 年的两个不同传感器获取的 i 像元的 DN 值; DN( n,i) 表示影像年内融合校正后 n 年的 i 像元的 DN 值。仍旧利用【spatial analyst 工具】-【地图代数】-【栅格计算器】,进行计算,如图以2006年为例进行计算,校正公式:
Con(("xhjz_f10_1994"!=0) & ("xhjz_f12_1994"!= 0),("xhjz_f10_1994" + "xhjz_f12_1994") / 2,0)
4、年际间校正
经过年内融合之后,仍然存在不同年份之间的影像不可比的现象,因此对其进行年际间校正。校正依据是: 后一年的像元 DN 值应该不小于前一年同一位置的像元 DN 值。如式( 4) 所示,年际间校正包括: ①后一年的某像元 DN 值为 0,则前一年的同 一位置的像元 DN 值也为 0; ②前一年的某像元的DN 值大于后一年同位置的像元 DN 值,则将前一年的 DN 值赋值给后一年该位置的像元 DN 值; ③否则,后一年的像元DN值为本身的DN值。
式 中,n = 1992,1993,1994,…,2013; DN( n-1,i) 、DN( n,i) 、DN( n+1,i) 分别表示影像的像元 i 在 n-1、n、 n+1年的 DN 值。如图2006年的校正公式:
Con("rh1997" == 0,0,Con(("rh1997" > 0) & ("rh1997" > "rh1997"),"rh1997","rh1998"));
让我们以2006年为例,看一看,每步校正后的变化吧。
最后再依照上述的统计步骤,对校正后的数据进行统计,可以看到现在1992-2013年夜光遥感数据呈呈现出相当平滑的上升模式。
四、参考文献
【1】卢秀,李佳,段平,等.中国区域 DMSP /OLS 夜间灯光影像的校正[J].测绘通报,2019( 7) : 127-131.DOI: 10.13474 /j.cnki.11-2246.20190234.