自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(61)
  • 问答 (1)
  • 收藏
  • 关注

原创 【LeetCode热题100】哈希

给定一个整数数组nums和一个整数目标值target,请你在该数组中找出target的那整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案,并且你不能使用两次相同的元素。你可以按任意顺序返回答案。[0,1]因为 nums[0] + nums[1] == 9 ,返回 [0, 1]。[1,2][0,1]

2024-10-14 05:29:56 525

原创 vue2和vue3中的组件间通信知识点总结

我是父组件我听到了子组件的秘密: {{ msg }}点我给父组件说我的秘密

2024-10-08 02:19:46 1154

原创 vue之vuex的使用及举例

Vuex是专门为Vue.js设计的集中式状态管理架构,它允许你将所有的组件共享状态存储在一个单独的地方,即“store”,并以相应的规则保证状态以一种可预测的方式发生变化。

2024-10-04 17:04:29 646 1

原创 如何在电脑中同时拥有vue-cli的多个版本,且可以来回切换?

最推荐的方法是使用 nvm 来管理不同版本的 Node.js 和 Vue CLI,因为这种方法相对简单且有效。你可以轻松地在不同的 Node.js 版本之间切换,并且每个版本下都可以安装不同版本的 Vue CLI。使用 npx 也是一个不错的选择,特别是当你不想全局安装多个版本的 Vue CLI 时。手动管理全局路径和别名则相对复杂且容易出错,因此通常不推荐使用。

2024-10-02 17:41:37 938

原创 【微信小程序知识点】getApp()全局数据共享,页面间通信,组件间通信

在小程序中,可以通过getApp()方法获取到小程序全局唯一的App实例。因此在App()方法中添加全局共享的数据,方法,从而实现页面,组件的数据传值。

2024-07-13 15:17:49 849

原创 【微信小程序知识点】手机号验证组件

手机验证组件,用于帮助开发者向用户发起手机号申请,必须经过用户同意后,才能获得由平台验证后的手机号,进而为用户提供相应的服务。2.手机号实时验证组件:在每次请求时,平台均会对用户选择的手机号进行实时验证。2.两种验证组件需要付费使用,每个小程序账号将有1000次体验额度。1.手机号快速验证组件:平台会对号码进行验证,但不保证是实时验证。1.目前该接口针对非个人开发者,且完成了认证的小程序开发。手机号实时验证组件。

2024-07-12 21:17:27 1668

原创 【微信小程序知识点】分享到朋友圈功能实现

1.页面必须设置允许“发送给朋友”,页面js文件声明onShareAppMessage事件监听函数。2.页面必须需设置允许“分享到朋友圈”,页面js文件声明onShareTimeline事件监听函数。

2024-07-12 20:39:56 378

原创 【微信小程序知识点】转发功能的实现

2.通过给button组件设置属性open-type="share",可以在用户点击按钮后触发Page.onShareAppMessage事件监听函数。1.页面js文件必须声明onShareAppMessage事件监听函数,并自定义转发内容。只有定义了此事件处理函数,右上角菜单才会显示“转发”按钮。转发功能,主要帮助用户更流畅地与好友分享内容与服务。

2024-07-12 20:25:00 643

原创 【微信小程序知识点】获取微信昵称

当小程序需要让用户完善个人资料时,我们可以通过微信提供的头像,昵称填写能力快速完善。想使用微信提供的昵称填写能力,需要三步:1.通过form组件中包裹住Input以及from-type为submit的button组件2.需要将input组件type的值设置为nickname,当用户输入框输入时,键盘上方会显示微信昵称3.给from绑定submit事件,在事件处理函数中通过事件对象获取用户昵称简单来说,给input设置type="nickname"

2024-07-12 17:55:28 2548

原创 【微信小程序知识点】获取微信头像

当小程序需要让用户完善个人资料时,我们可以通过微信提供的头像,昵称填写能力快速完善。想使用微信提供的头像填写能力,需要两步:1.将button组件open-type的值设置为chooseAvatar2.通过bindchooseavatar事件回调获取到头像信息的临时路径。

2024-07-12 16:58:48 738

原创 【微信小程序知识点】自定义构建npm

(6)配置 project.config.json的setting.packNpmRelationList项,指定packageJsonPath和miniprogramNpmDistDir的位置。在实际开发中,随着项目的功能越来越多,项目越来越复杂,文件目录也变得很繁琐,为了方便进行项目的开发,开发人员通常会对目录结构进行优化调整,例如:将小程序源码放到miniprogram目录下。(2)在project.config.json中配置路径源码路径。miniprogram_npm包就出现在了指定的位置。

2024-07-12 11:49:01 687

原创 [微信小程序知识点]自定义组件-拓展-外部样式类

如果需要使用外部样式类修改组件的样式,在Component中需要用extemalClassess定义若干个外部样式类。

2024-07-11 10:59:16 506

原创 不同node版本的切换及其指定版本vue-cli脚手架下载

4..nvm安装完成后,检验是否安装成功,进入命令控制行窗口(进入方法见前面),输入命令nvm v查看,如果出现版本号,即安装成功(如果安装不成功,查看之前自己安装的node.js有没有删除彻底、安装nvm工过程有没有漏掉什么!3.为了彻底删除之前安装的node.js,鼠标点击电脑左面最左下角的win窗口图标弹出,输入“控制面板”再点击回车键进入,进入控制面板后,找到所安装的node.js并卸载。即可选择你本地所使用的Node.js版本,使用此命令行可以根据你自己的需要随意切换node.js版本运行。

2024-06-29 10:58:38 980

原创 MySql增删改查笔记

- 注释 查询 我想从users表中查询所有的数据 *表示所有的列。-- 查询指定的列 列的字段名之间以逗号分隔。-- 插入语句 INSERT INTO。-- 更新语句 UPDATE。

2024-04-02 16:59:34 174

原创 前端面试题

此外,从安全性来看,cookie在请求一个新的页面的时候都会被发送过去,这可能导致安全问题,例如如果cookie被拦截,就可能获得session的所有信息。其次,从存储的大小来看,cookie的存储量较小,大约只有4KB,因此只适合保存很小的数据,如会话标识。这意味着,如果你修改原始对象或数组,其深拷贝的副本不会受到影响,因为它们引用的是不同的内存位置。Promise是ES6中引入的一个用于处理异步操作的对象,它代表了一个可能现在、将来或永远不会知道其值的异步操作的最终完成(或失败)及其结果值。

2024-04-01 17:08:31 1104

原创 ES6—Symbol详解

ES5 的对象属性名都是字符串,这容易造成属性名的冲突。比如,你使用了一个他人提供的对象,但又想为这个对象添加新的方法(mixin 模式),新方法的名字就有可能与现有方法产生冲突。如果有一种机制,保证每个属性的名字都是独一无二的就好了,这样就从根本上防止属性名的冲突。这就是 ES6 引入Symbol的原因。ES6 引入了一种新的原始数据类型Symbol,表示独一无二的值。

2024-03-23 11:09:01 1350

原创 ES6—运算符的扩展

ES2016新增了一个指数运算符(**)。这个运算符的一个特点是右结合,而不是常见的左结合。多个指数运算符连用时,是从最右边开始计算的。上面代码中,首先计算的是第二个指数运算符,而不是第一个。指数运算符可以与等号结合,形成一个新的赋值运算符(**=

2024-03-23 10:09:35 951

原创 ES6—Module 的语法

ES6 模块的设计思想是尽量的静态化,使得编译时就能确定模块的依赖关系,以及输入和输出的变量。export和import。export命令用于规定模块的对外接口,import命令用于输入其他模块提供的功能。一个模块就是一个独立的文件。该文件内部的所有变量,外部无法获取。如果你希望外部能够读取模块内部的某个变量,就必须使用export关键字输出该变量。下面是一个 JS 文件,里面使用export命令输出变量。通常情况下,export输出的变量就是本来的名字,但是可以使用as关键字重命名。

2024-03-22 17:35:48 519

原创 一篇文章搞懂vue基础(上)

初识vue:1.想让Vue工作,就必须创建一个vue实例,且要传入一个配置对象;2.root容器里的代码依然符合html规范,只不过混入了一些特殊的vue语法3.root容器里的代码被称为【Vue模版】4.Vue实例和容器是一一对应的5.真实开发中只有一个Vue实例,并且会配合着组件一起使用6.{{×××}}中的×××要写成js表达式,且XXX可以自动读取到data中的所有属性7.一旦data中的数据发生改变,那么模版(页面)中用到该数据的地方也会自动更新。

2024-03-20 22:15:55 547

原创 一篇文章搞懂AJAX

Ajax的全称是Asynchronous Javascript And XML(异步JavaScript 和XML)。通俗的理解:在网页中利用XMLHttpRequest对象和服务器进行数据交互的方式,就是Ajax.为了验证接口能否正常被访问,我们常常需要使用接口测试工具,来对数据接口进行检测。好处:接口测试工具能让我们在不写任何代码的情况下,对接口进行调试和测试。表单在网页中主要负责数据采集功能。

2024-03-18 19:44:34 694

原创 let和const命令

ES6新增了let命令,用来声明变量。它的用法类似于var,但是所声明的变量,只在let命令所在的代码块内有效。上面代码在代码块中,分别用let和var声明了两个变量。然后在代码块之外调用这两个变量,结果let声明的变量报错,var声明的变量返回了正确的值。这表明,let声明的变量只在它所在的代码块有效。for循环的计数器,就很合适使用let命令上面代码中,计数器i只在for循环体内有效,在循环体外就会报错。下面的代码如果使用var,最后输出是10.

2024-02-26 17:02:06 1037

原创 蓝桥杯真题之BFS——种草

小明有一块空地,他将这块空地划分为 n 行 m 列的小块,每行和每列的长度都为 1。这些草长得很快,每个月,草都会向外长出一些,如果一个小块种了草,则它将向自己的上、下、左、右四小块空地扩展,这四小块空地都将变为有草的小块。接下来 n 行,每行包含 mm 个字母,表示初始的空地状态,字母之间没有空格。如果为小数点,表示为空地,如果字母为 g,表示种了草。思路:定义一个列表,比如mat[],用它来记录草地的实时情况,定义一个队列,用来扩展新的草地。如果为小数点,表示为空地,如果字母为 g,表示长了草。

2023-04-01 23:01:57 563 1

原创 《自我与本我》————超越唯乐原则(第一章)

《自我与本我》是弗洛伊德后期论著汇编,收录了他后期的三篇成熟作品,简练地表达了精神分析学的理论要点和学说精髓,揭示了人的心理及其活动的表象及成因:

2022-08-31 16:05:39 881

原创 【深度学习】pix2pix GAN理论及代码实现

Pix2pixgan本质上是一个cgan,图片x作为此cGAN的条件,需要输入到G和D中。G的输入是x(x是需要转换的图片),输出是生成的图片G(x)。D则需要分辨出(x,G(x))和(x,y)pix2pixGAN主要用于图像之间的转换,又称图像翻译。...

2022-08-09 08:00:00 5573 14

原创 RV-GAN:使用新的多尺度生成对抗网络分割眼底照片中的视网膜血管结构

DRIVE数据集,视网膜图像中对血管分割进行比较研究,数据来源与糖尿病视网膜病变筛查项目,40张视网膜图片,20张样本用作训练,20张样本用做测试,图像的原始大小为565x584CHASE-DB1训练20张,测试8张,图片的原始大小是999×960。...

2022-08-07 00:38:27 1930 1

原创 CGAN理论讲解及代码实现

CGAN生成的图像虽然有很多缺陷,譬如图像边缘模糊,生成的图像分辨率太低,但是它为后面的pix2pixGAN和CycleGAN开拓了道路,这两个模型转换图像网络时对属性特征的处理方法均受到CGAN启发。针对原始GAN不能生成具有特定属性的图片的问题,Mehdi Mirza等人提出了CGAN,其核心在于将属性信息y融入生成器和判别器中,属性y可以是任何标签的信息,例如图像的类别,人脸图像的面部表情等。生成的图像是随机的,不可预测的,无法控制网络输出特定的图片,生成目标不明确,可控性不强。...

2022-08-07 00:26:26 6461 6

原创 人工神经网络

这一学派认为,对于人工智能的研究应该立足于现代计算机的物理属性和体系结构,用数学和逻辑推理的方法从现有的计算机中获得确定性的知识,而不是一味的强调对人脑的模仿,这一学派是人工智能的数理学派,比如支持向量机就是这一学派的典型代表,而马上要学到的人工神经网络就是仿生学派的典型代表。在前馈网络当中,各个神经元按接受信息的先后分为不同层,每一层中的神经元接收前一层神经元的输出,经过计算后,输出到下一层神经元,整个网络中的信息是朝一个方向传播的,没有反向的信息。E是权重w的函数,何如找到使得函数值最小的w。...

2022-07-31 08:09:24 641

原创 基于 Retina-GAN 的视网膜图像血管分割

时间2022;作者侯松辰,张俊虎;会议ISSN。

2022-07-20 12:30:11 2890 5

原创 一种基于超像素和生成对抗网络的视网膜血管分割方法

本文提出一种新的视网膜血管分割方法。首先改进SegAN,融入ASPP模块后扩大了网络的感受野,以便捕获多尺度图像信息。之后利用改进的SegAN对血管进行提取,得到了具有较高准确度的分割图像。借用线性谱聚类超像素边缘贴合性高、计算速度快、分割效果好的优点,将SegAN的分割结果映射到超像素分割图上,对像素块进行分类。实验证明该方法对于血管的提取与分割有着较好的效果。对于增殖型糖尿病视网膜病变图像,以及普通视网膜图像中少量细血管分支不连续性问题则需要进一步的研究。httpshttps。......

2022-07-20 12:06:49 1174 2

原创 DCGAN理论讲解及代码实现

DCGAN也叫深度卷积生成对抗网络,DCGAN就是将CNN与GAN结合在一起,生成模型和判别模型都运用了深度卷积神经网络的生成对抗网络。DCGAN将GAN与CNN相结合,奠定了之后几乎所有GAN的基本网络架构。DCGAN极大地提升了原始GAN训练的稳定性以及生成结果的质量...

2022-07-19 00:31:20 18796 21

原创 基础GAN实例(pytorch代码实现)

输出是长度为100的噪声(正态分布随机数)输出为(1,28,28)的图片linear1100---256linear2256--512linear3reshapenn.Tanh()#对于生成器,最后一个激活函数是tanh,值域-1到1)#定义前向传播#x表示长度为100的noise输入img=img.view(-1,28,28)#转换成图片的形式输入为为(1,28,28)的图片,输出为二分类的概率值,输出使用sigmoid的激活0-1BCEloss计算交叉熵损失。...

2022-07-16 22:24:22 8319 21

原创 【深度学习】损失函数(平均绝对误差,均方误差,平滑损失,交叉熵,带权值的交叉熵,骰子损失,FocalLoss)

损失函数是用于衡量模型所作出的预测离真实值(Ground Truth)之间的偏离程度。。俗话说,任何事情必然有它的两面性,因此,并没有一种万能的损失函数能够适用于所有的机器学习任务,所以在这里我们需要知道每一种损失函数的优点和...

2022-07-11 23:09:54 6736

原创 【经典卷积网络】ResNet理论讲解

我们知道在越深层的神经网络模型中,卷积层和池化层的数量就越多,而卷积和池化的目的是为了特征提取,所以理论上来讲越深层的网络会输出表示能力越强的特征 但是,我们发现在做实验时最深的56层网络得到了最高的错误率。说明了网络衰退的问题确实存在,即随着深度的增加,网络的性能会越来越差,残差网络就是解决这个问题的。那残差网络具体做了什么工作呢?下面来具体解释以上两点第一点(让深度网络后面的层实现恒等映射)的**解释**:恒等映射可以理解成:在某一层的输出已经很好的体现图像的特征了,后续的网络不能改变这些特征,即所谓恒

2022-07-11 22:31:57 381

原创 AlexNet代码实现

这次的课程我们就来复现一次`AlexNet`, 首先来看它的网络结构可以看出`AlexNet`就是几个卷积池化堆叠后连接几个全连接层, 下面就让我们来尝试仿照这个结构来解决[cifar10]分类问题. 依照上面的结构,我们定义AlexNet打印一下这个网络 我们验证一下网络结构是否正确,输入一张32×32的图片,看看输出 可以看到,训练 20 次,AlxeNet 能够在 cifar 10 上取得 70% 左右的测试集准确率...

2022-07-10 20:04:38 1649

原创 光学相干断层扫描中基于 GAN 的视网膜层超分辨率分割

目录1.目的2.网络架构部分2.1整体描述 2.2生成器2.2.1ResNet2.2.2 U-net2.3 鉴别器3.数据采集和预处理4..损失函数部分5.实验和结果6. 结论这项工作集中于视网膜层分割的挑战性任务,以及更高清晰度和准确性的超分辨率GAN的基线架构由两个相互竞争的网络组成,分别命名为生成器和鉴别器。在这项工作中,生成器的目的是产生OCT输入图像的超分辨分割标签,而鉴别器学习区分真实的真实标签和生成的标签。图1显示了GAN的高级体系结构。下面详细记录了体系结构的每个组件。对于我们设计的 GAN

2022-07-09 23:12:03 790 1

原创 【经典神经网络】ResNet实现

ResNet 通过引入了跨层链接解决了梯度回传消失的问题。¶ 这就普通的网络连接跟跨层残差连接的对比图,使用普通的连接,上层的梯度必须要一层一层传回来,而是用残差连接,相当于中间有了一条更短的路,梯度能够从这条更短的路传回来,避免了梯度过小的情况。假设某层的输入是 x,期望输出是 H(x), 如果我们直接把输入 x 传到输出作为初始结果,这就是一个更浅层的网络,更容易训练,而这个网络没有学会的部分,我们可以使用更深的网络 F(x) 去训练它,使得训练更加容易,最后希望拟合的结果就是 F(x) = H(x)

2022-07-09 15:36:10 747

原创 卷积代码实现

卷积代码实现

2022-07-09 15:22:07 1378

原创 手写数字代码识别(pytorch)实现

手写代码数字识别

2022-07-08 20:09:46 2691

原创 【机器学习】Logistic 回归(pytorch)实现

下面我们通过例子来具体学习Logistic回归:

2022-07-08 19:55:09 1111 1

原创 逻辑回归与多层神经网络的比较

以下例子用于比较逻辑回归和神经网络在处理分类问题时的差别

2022-07-08 19:10:56 916

Anaconda和pytorch下载流程

这是Anaconda软件和pytorch下载教程,适用于准备入门机器学习的小白。写的非常详细,本教程是用电脑的cpu来运行代码的,适用于小数据集的运行,不适用于大数据集,因为cpu速度慢

2022-11-25

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除