题目描述:
给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。
完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^h 个节点。
如果我们不考虑二叉树是完全二叉树的话,仅仅当作普通二叉树处理,那么只需要遍历所有节点并计数就可以得到结果,在此,我们使用递归法来遍历所有节点
确定递归函数的参数和返回值
返回值应该是节点个数,因此返回值为int,参数是要传入的二叉树的根节点
int getNodeNum(TreeNode* root)
确定终止条件
当遇到节点为空时即终止,且返回值应该是0
if(root == NULL) return 0;
确定单层逻辑
对于一个节点,我们先计算其左子树节点数量,然后计算其右子树节点数量,取两者和在加1即可
所以按照普通二叉树来计算节点数量代码如下:
int getNodeNum(TreeNode* root)
{
if(root == NULL)
return 0;
int leftNodeNum = getNodeNum(root->left);
int rightNodeNum = getNodeNum(root->right);
int nodeNum = 1 + leftNodeNum + rightNodeNum;
return nodeNum;
}
考虑到本题所给的二叉树是完全二叉树,那么就可以利用完全二叉树的特点来计算节点数量。我们知道,完全二叉树除了底层节点,其余每一层的节点都是满的,并且底层节点从左到右,不会在中间断开,如下
另外,我们知道,深度为n的满二叉树的节点数量为2^n-1,观察完全二叉树就可以发现,我们可以在完全二叉树里面找到满二叉树,并用上式计算节点数量,递归代码如下:
int countNodes(TreeNode* root) {
//递归终止条件一:节点为空,节点数为0
if(root == nullptr) return 0;
//递归终止条件二:该节点对应的二叉树为满二叉树,返回这棵满二叉树的节点数量
//即(2<<leftDeepth) - 1,这里使用位运算来计算2的幂
TreeNode* left = root->left;
TreeNode* right = root->right;
int leftDeepth = 0, rightDeepth = 0;
while(left){
left = left->left;
leftDeepth++;
}
while(right){
right = right->right;
rightDeepth++;
}
if(leftDeepth == rightDeepth)
return (2<<leftDeepth) - 1;
//单层处理逻辑:递归计算左右子树的节点数量,返回值要+1,因为要包括该节点
int leftNum = countNodes(root->left);
int rightNum = countNodes(root->right);
return leftNum + rightNum + 1;
}