猎豹移动(Cheetah Mobile)

本文来自腾讯元宝


公司背景与发展历程

  1. 成立与早期定位
    猎豹移动成立于2010年11月,由金山安全可牛影像合并而成,初期以移动安全工具清理软件为核心业务。其明星产品包括《猎豹清理大师》(Clean Master)和《猎豹浏览器》,全球用户量迅速突破5亿,70%来自海外市场

  2. 资本里程碑

    • 2011年获腾讯2000万美元战略投资。
    • 2014年5月在美国纽交所上市(NYSE:CMCM),发行价14美元,市值达19.32亿美元
    • 2021年启动战略转型,从移动互联网AI驱动产业互联网升级。

二、核心业务与战略转型

  1. 传统业务:移动工具与游戏

    • 工具应用:包括《猎豹清理大师》《金山电池医生》等,全球累计下载量近30亿次。
    • 游戏发行:推出《钢琴块2》《滚动的天空》等爆款游戏,曾登顶全球双平台下载榜。
  2. AI与机器人业务

    • 智能服务机器人:2017年成立猎户星空,开发AI接待机器人“豹小秘”、零售机器人“豹小贩”等,应用于酒店、餐厅等场景。
    • 大模型布局:2024年发布猎户星空Orion-14B大模型,参数规模为百亿级,专注于端侧部署与企业级应用,例如为酒旅集团开发“AI超级带教”系统,提升员工培训效率。
  3. AI赋能解决方案

    • 技术能力:涵盖语音识别、视觉导航、机械臂控制等技术,构建“猎户星空语音OS”“Robot OS”等系统。
    • 行业应用:推出多云管理服务(MSP)智能数据分析工具,助力企业数字化转型。

三、财务状况与市场表现

  1. 收入与利润

    • 截至2024年9月30日,收入总额5.7亿元人民币,同比增长13.46%;归母净利润亏损2.51亿元,同比收窄16.88%。
    • 公司近年持续投入AI研发,导致短期盈利承压,但长期聚焦“非连续性增长”。
  2. 股价动态

    • 2025年3月股价波动显著:3月10日跌6.12%至4.83美元/股,3月14日回升4.27%至5.12美元/股,总市值约1.54亿美元
    • 机构预测目标价均值6.56美元,最高6.69美元,显示市场对其转型的谨慎乐观。

四、未来战略与挑战

  1. AI与5G机遇

    • 推动AI与机器人深度融合,拓展智能服务机器人在物流、零售等领域的应用。
    • 深化与亚马逊云科技合作,加速全球市场部署。
  2. 挑战与风险

    • 商业化落地:需验证AI解决方案的规模化盈利能力。
    • 竞争压力:在“百模大战”中,需差异化定位(如百亿级参数模型)以控制成本。

总结

猎豹移动正从工具软件巨头AI产业互联网公司转型,其核心逻辑是通过垂直一体化的技术能力(芯片、算法、硬件)赋能实体经济。尽管短期财务承压,但其在机器人、大模型等领域的布局,以及与行业伙伴的共创模式(如私有化部署、数据服务),展现了长期增长潜力。投资者可关注其2024财年年报(预计3月20日披露)以评估转型成效。


猎豹移动的创始人是傅盛,其创业历程战略布局深刻反映了中国互联网行业的变迁。以下是他的核心经历与成就梳理:


一、早期职业与360时期

  1. 技术启蒙与产品经理生涯
    傅盛1978年出生于江西景德镇,大学主修计算机相关专业。2003年加入周鸿祎创立的3721公司(后为奇虎360),成为360安全卫士早期核心产品经理。他主导开发的360安全卫士用户量迅速突破1亿,奠定了360在PC安全领域的地位。

  2. 与周鸿祎决裂与首次创业
    2008年,因理念分歧与周鸿祎公开决裂,离开360后短暂加入经纬创投担任投资人。2009年创办可牛影像,推出可牛杀毒软件,但因市场竞争激烈未能突围。2010年,可牛与金山安全合并成立金山网络(后更名猎豹移动),傅盛出任CEO。


二、猎豹移动崛起与全球化战略

  1. 转型工具应用与出海突破
    面对国内安全软件市场的红海竞争,傅盛选择差异化路线:

    • 产品创新:2012年推出全球首款手机清理工具Clean Master​(猎豹清理大师),瞄准海外市场。通过优化谷歌Play算法排名,该应用迅速登顶全球工具类下载榜,月活用户峰值超5亿,其中70%来自海外。
    • 资本化里程碑:2014年带领猎豹移动登陆纽交所,市值达19.5亿美元,成为“中国互联网出海第一股”。
  2. 多元化布局与危机应对

    • 内容与游戏:上市后拓展休闲游戏(如《钢琴块2》)、直播等业务,形成工具+内容矩阵。
    • 危机与转型:2018年起,因谷歌政策收紧导致工具业务受挫,傅盛提出“All in AI”,投资并收购猎户星空,布局服务机器人与大模型,完成从ToC到ToB的转型。

三、AI与机器人战略(2016-2025)​

  1. 技术布局与产品落地

    • 全链路自研:猎户星空自主研发语音识别、视觉导航等AI技术,推出接待机器人“豹小秘”、配送机器人“豹小贩”等,应用于酒店、餐厅、工厂等场景,2024年全球发货量超3.5万台。
    • 大模型赋能:2023年发布猎户星空Orion-14B大模型,聚焦企业级应用(如员工培训、客户服务),并推出轻量化配送机器人,获韩国、日本订单。
  2. 商业化与挑战

    • 收入结构:2024年ToB业务占比超60%,其中机器人收入年增45%,云服务代理(亚马逊、谷歌云)和海外营销(Meta平台代理)成为新增长点。
    • 财务表现:2024年Q2营收5.7亿元,亏损同比收窄16.88%,现金储备2.7亿美元,但市值长期低迷(约1.5亿美元),需验证AI规模化盈利

四、行业影响与个人特质

  1. 战略眼光与争议

    • 行业标签:被雷军称为“中国客户端软件前三的产品经理”,以敏锐洞察力先后抓住安全软件、工具出海、AI机器人三次浪潮。
    • 争议事件:与周鸿祎长达16年的恩怨、公开批评王自如“吃软饭”等言论引发热议,同时因高调直播、短视频营销被质疑“作秀”。
  2. 核心特质

    • 好奇心驱动:自述“好奇心与恐惧”是两大驱动力,从PC安全到AI机器人持续探索新领域。
    • 长期主义:坚持七年投入AI,2023年称“AI是猎豹未来30年的赛道”,并通过冬奥会机器人服务(如“豹大白”)提升品牌认知。

总结

傅盛从360安全卫士的产品经理到猎豹移动创始人,展现了极强的战略调整能力:从工具出海到AI机器人,其每一步转型都紧扣技术周期与市场空白。尽管面临市值低迷、商业化验证等挑战,他仍以“探索世界与自我”的创业哲学,持续推动猎豹向AI产业互联网公司进化。若需更详细的时间线或投资案例,可进一步查阅其传记或公开访谈。

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
数据集介绍:陆生动物多场景目标检测数据集 一、基础信息 数据集名称:陆生动物多场景目标检测数据集 数据规模: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 分类类别: - 家畜类:Cattle(牛)、Horse(马)、Sheep(羊) - 宠物类:Cat(猫)、Dog(狗) - 野生动物类:Bear(熊)、Deer(鹿)、Elephant(大象)、Monkey(猴子) - 禽类:Chicken(鸡) 标注格式: YOLO格式标注,包含目标边界框坐标和10类动物标签,支持多目标检测场景 数据特性: 涵盖俯拍视角、户外自然场景、牧场环境等多角度拍摄数据 二、适用场景 农业智能化管理: 支持开发牲畜数量统计、行为分析系统,适用于现代化牧场管理 野生动物保护监测: 可用于构建自然保护区动物识别系统,支持生物多样性研究 智能安防系统: 训练农场入侵检测模型,识别熊等危险野生动物 宠物智能硬件: 为宠物智能项圈等设备提供多动物识别训练数据 教育科研应用: 适用于动物行为学研究和计算机视觉教学实验 三、数据集优势 物种覆盖全面: 包含10类高价值陆生动物,覆盖畜牧、宠物、野生动物三大场景需求 标注质量优异: YOLO格式标注严格遵循标准规范,支持YOLOv5/v7/v8等主流检测框架直接训练 场景多样性突出: 包含航拍视角、近距离特写、群体活动等多种拍摄角度和场景 大规模训练保障: 超12,000张标注图片满足深度神经网络训练需求 现实应用适配性: 特别包含动物遮挡、群体聚集等现实场景样本,提升模型部署效果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伸头看云朵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值