读书笔记-第1章 数据清洗概述

本文详细介绍了数据清洗的重要性,数据质量的评价指标,包括准确性、完整性、简洁性和适用性,并探讨了数据质量问题的分类。数据清洗定义、原理及流程也被详细阐述,包括数据分析、定义清洗策略、错误实例的检测与纠正等。此外,文章还讨论了数据清洗策略,如手工清洗、自动清洗、特定应用领域和无关应用领域的策略,以及混合策略。最后,提到了缺失值、重复值和错误值的清洗方法,提供了解决这些问题的不同技术。
摘要由CSDN通过智能技术生成

学习目标

1、了解数据清洗的背景

2、了解数据清洗的定义

3、熟悉数据清洗的原理

4、掌握数据清洗的具体流程

5、了解常见数据清洗的策略和方法

1.1数据清洗的背景

     当今时代,企业信息化的要求越来越迫切。对于企业的决策者来说,正所谓“垃圾进垃圾出(garbage in,garbage out)”如果作为决策支持的数据仓库存放的数据质量达不到要求将直接导致数据分析和数据挖掘不能产生理想的结果,甚至还会产生错误的分析结果,从而误导决策。因此,我们需要对数据仓库中的数据进行相关清洗操作,得出可靠、可准确反映企业实际情况的数据,用以支持企业战略决策。由此可见,数据质量在企业战略决策中占据着重要的地位。本节将讲解数据质量概述、数据质量的评价指标以及数据质量的问题分类。

 1.1.1 数据质量概述

       数据质量是指在业务环境下,数据符合数据消费者的目的,能满足业务场景具体需求的程度。从适用性的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值