《统计软件Stata、SAS及实践》实验报告基础题1

一、实验目的及要求

  1. 掌握Stata的编程。
  2. 掌握SAS的编程方法,包括数据集、循环语句、数组、条件语句、统计图形、回归分析、方差分析等。
  3. 要求:通过Stata和SAS编程实现。

二、实验内容、实验步骤及结果

基础题

B1

安装在某种机器上的金属板的平均重量为25千克。对某企业生产的22块金属板进行测量,得到的质量(单位:千克)的数据(B1.xls,见data文件夹)。

实验要求:编写Stata程序,完成并分析以下问题

(1)检验金属板的重量是否服从正态分布;(注:推荐使用Shapiro-Wilk W test,该检验的原假设是样本服从正态分布

(2)在0.05的显著性水平下,检验该企业生产金属板的重量是否符合要求(注:该检验的原假设是金属板的重量符合要求)。

:首先,在stata中导入B1.xlsx文件,设置第一行作为变量名。

也可用import语句加路径获取数据。stata程序如下:

. import excel "C:\Users\oo\Desktop\《统计软件Stata、SAS及实践》报告\data\B1.xlsx", sheet("J1") firstrow
(1 var, 22 obs)

(1)本题的原假设为金属板的重量服从正态分布。使用Shapiro-Wilk W test的swilk命令检验,得出W统计量的分布表,可以看到W统计量=0.97426,其对应p值=0.80697 > 0.05,因此接受原假设,即金属板的重量服从正态分布。 程序如下及运行结果:

. swilk 重量

                   Shapiro-Wilk W test for normal data

    Variable |        Obs       W           V         z       Prob>z
-------------+------------------------------------------------------
        重量 |         22    0.97426      0.652    -0.867    0.80697

(2)原假设:金属板的重量符合要求,平均重量为25千克。从第(1)小题得出金属板的重量服从正态分布,使用t统计量的ttest命令检验,可以看到t统计量=1.0067,其对应p值=0.3255> 0.05,从而接受原假设,因此在0.05的显著性水平下,可认为该企业生产金属板的重量符合要求。 程序如下及运行结果:

. ttest 重量=25

One-sample t test
------------------------------------------------------------------------------
Variable |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]
---------+--------------------------------------------------------------------
    重量 |      22       25.45    .4470078    2.096653     24.5204     26.3796
------------------------------------------------------------------------------
    mean = mean(重量)                                             t =   1.0067
Ho: mean = 25                                    degrees of freedom =       21

    Ha: mean < 25               Ha: mean != 25                 Ha: mean > 25
 Pr(T < t) = 0.8372         Pr(|T| > |t|) = 0.3255          Pr(T > t) = 0.1628

B2

为研究上市公司对其股价波动的关注程度,一家研究机构对在主板,中小板和创业板上市的190家公司进行了调查,得到了信息数据(B2.csv,见data文件夹)。

实验要求:编写Stata程序,完成并分析以下问题

(1)对企业类型绘制饼图,依据关注度进行分类显示,如下图1;

(2)饼图细节设置:扇区1填充红色,分离扇区(选项:特小三分之一);扇区2填充黄色,不分离扇区;扇区3填充蓝色,不分离扇区。扇区1、2、3的标签都统一设置为百分比。

图一

答:在stata中导入B2.csv文件,设置第一行作为变量名。

. import delimited "C:\Users\oo\Desktop\《统计软件Stata、SAS及实践》报告\data\B2.csv", varnames(1) encoding(UTF-8) clear
(2 vars, 190 obs)

利用图形工具中的饼图绘制:

设置类别变量“企业类型”;

在扇区属性中设置每个扇区的颜色和分离程度;

在饼图标签属性,设置所有扇区的标签类型为百分比;

按关注度分别绘制饼图;

也可利用绘制饼图的基本命令:graph pie [if] [in] [weight], over (varname) [options]对企业类型绘制饼图使用options选项中的pie(...)进行饼图的每个扇形外观的细节设置包括颜色、突出扇形1显示的设定,以及选项plable(...)在所有扇形上百分比的标签设定。最后绘制出和图一一样的饼图。程序如下:

. graph pie, over(企业类型) pie(1, color(red) explode(third_tiny)) pie(2, color(yellow)) pie(3, color(blue)) plabel(_all percent) by(关注度)

B3

下面的每一行数据代表纸箱子的length, width,height, 单位是厘米。计算每一个箱子的体积、需要的纸板的面积(假定顶部和底部的纸板对折到中间,即:顶部和底部的厚度是两层纸板)。假定纸板的价格为$0.25/平方米。

16 15 24

44 12 32

15 30 45

20 30 36

25 20 40

实验要求:编写SAS程序,完成并分析以下问题

(1)建立一个SAS临时数据集B31读入数据,变量为lengthwidth height

(2)利用数据集B31建立一个新SAS临时数据集B32,它包括B31的所有数据,并建立三个新变量:每个箱子的体积(volume),制造费用(cost),以及每立方米体积的造价y(公式为:y=cost/volume);

(3)使用建立的数据集B32建立一个新SAS临时数据集B3,只包括其中的volume, cost 和y三个变量。

:(1)利用数据步创建和管理数据集:建立临时数据集B31读入数据,变量为length,width和 height;利用过程步将结果打印到结果查看器;程序如下:

/* B3(1) */
data B31;					/*创建数据集并命名*/
input length width height;  /*列出数据集的变量名*/
cards;                      
16 15 24
44 12 32
15 30 45
20 30 36
25 20 40
;
run;
proc print data = B31;    /*结果的打印*/
run;

运行结果:

Obs

length

width

height

1

16

15

24

2

44

12

32

3

15

30

45

4

20

30

36

5

25

20

40

(2)通过SET语句复制出数据集B31内的数据建立新的SAS临时数据集B32,它包括B31的所有数据,并建立三个新变量:每个箱子的体积(volume),制造费用(cost),以及每立方米体积的造价y(公式为:y=cost/volume); 程序如下:

/* B3(2) */
data B32;                 /*数据集的创建*/
set B31;                  /* set读取B31的数据,纵向合并数据集,merge(横向)*/
volume = length * width * height;
cost = 0.25 * 0.0001 * (length * width * 4 + length * height * 2 + width * height * 2);
y = cost / volume;
run;
proc print data = B32;   
run;

运行结果:

Obs

length

width

height

volume

cost

y

1

16

15

24

5760

0.06120

.000010625

2

44

12

32

16896

0.14240

.000008428

3

15

30

45

20250

0.14625

.000007222

4

20

30

36

21600

0.15000

.000006944

5

25

20

40

20000

0.14000

.000007000

(3)使用建立的数据集B32建立一个新SAS临时数据集B3,保留其中的volume, cost 和y三个变量删除length,width和height三个变量

程序如下:

/* B3(3) */
/* 方法一 keep语句保留变量 */
data B3;                  
set B32(keep = volume cost y);
run;
proc print data = B3;     
run;
/* 方法二 drop语句删除变量 */
data B3;                  
set B32(drop = length width height);
run;
proc print data = B3;     
run;

运行结果:

Obs

volume

cost

y

1

5760

0.06120

.000010625

2

16896

0.14240

.000008428

3

20250

0.14625

.000007222

4

21600

0.15000

.000006944

5

20000

0.14000

.000007000

    数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
    内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问,逐步提高图表绘制和代码编写的准确性和效率。
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值