21. 复原IP地址,78.子集,90.子集II

class Solution {
public:
    vector<string> res;
    vector<string> restoreIpAddresses(string s) {
        if (s.size() < 4 || s.size() > 12) return res; // 算是剪枝了!!!
        backtracking(s, 0, 0);
        return res;
    }

    void backtracking(string& s, int start_index, int point_num){
        
        if(start_index >= s.size()) return;
        if(point_num == 3) {
            //注意s.size() - start_index!!!
            string s_sub = s.substr(start_index, s.size() - start_index); 
            if(isValid(s_sub)) res.push_back(s);
            return;
        }

        for(int i = start_index; i < s.size(); i++){
            string s_sub = s.substr(start_index, i - start_index + 1); //注意获取子串的方法!!!注意i - start_index + 1!!!
            if(isValid(s_sub)) {
                s.insert(s.begin() + i + 1, '.'); //注意s.insert的使用!!!!!!
                backtracking(s, i + 2, point_num + 1); //注意这里是从i+ 2开始
                s.erase(s.begin() + i + 1);
            }
            else continue;
        }
    }
    //验证是否是有效的IP子串
    bool isValid(string& s_sub){
        if(s_sub.size() > 3 || (s_sub[0] == '0' && s_sub.size() > 1)) return false;

        int temp = 0;
        for(int i = 0; i < s_sub.size(); i++){
            if(s_sub[i] - '0' < 0 || s_sub[i] - '0' > 9) return false;
            temp = temp*10 + (s_sub[i] - '0');
        }
        if(temp > 255) return false;
        else return true;
    }
};

求子集问题和77.组合 (opens new window)131.分割回文串 (opens new window)不一样。

如果把 子集问题、组合问题、分割问题都抽象为一棵树的话,那么组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!

其实子集也是一种组合问题,因为它的集合是无序的,子集{1,2} 和 子集{2,1}是一样的。

那么既然是无序,取过的元素不会重复取,写回溯算法的时候,for就要从startIndex开始,而不是从0开始!求取子集问题,不需要任何剪枝!因为子集就是要遍历整棵树

class Solution {
public:
    vector<int> path;
    vector<vector<int>> res;
    vector<vector<int>> subsets(vector<int>& nums) {
        // 收集子集,要放在终止添加的上面,否则会漏掉自己
        backtracking(nums, 0);
        return res;
    }

    void backtracking(vector<int>& nums, int start_index){

        res.push_back(path);

        for(int i = start_index; i < nums.size(); i++){
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }
};

这道题目和78.子集 (opens new window)区别就是集合里有重复元素了,而且求取的子集要去重。

那么关于回溯算法中的去重问题,40.组合总和II (opens new window)中已经详细讲解过了,和本题是一个套路

剧透一下,后期要讲解的排列问题里去重也是这个套路,所以理解“树层去重”和“树枝去重”非常重要

子集问题去重一定要排序。

class Solution {
public:
    vector<int> path;
    vector<vector<int>> res;
    vector<vector<int>> subsetsWithDup(vector<int>& nums) {
        sort(nums.begin(), nums.end()); //去重需要排序!!!!!!
        backtracking(nums, 0);
        return res;
    }

    void backtracking(vector<int>& nums, int start_index){
        
        res.push_back(path);

        for(int i = start_index; i < nums.size(); i++){
            //树层去重,要对同一树层使用过的元素进行跳过
            if(i > start_index && nums[i] == nums[i-1]) continue;
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值