class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
if(amount == 0) return 0;
// dp[j]:凑足总额为j所需钱币的最少个数为dp[j]
vector<int> dp(amount + 1, INT_MAX); //注意初始化方式!!!!!!
dp[0] = 0;
for(int i = 0; i < coins.size(); i++){ //遍历物品
for(int j = coins[i]; j < amount + 1; j++){ //遍历背包
//如果dp[j - coins[i]]是初始值则跳过
if(dp[j - coins[i]] != INT_MAX) dp[j] = min(dp[j], dp[j - coins[i]] + 1);
}
}
return dp[amount] == INT_MAX ? -1 : dp[amount];
}
};
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for(int i = 1; i*i < n + 1; i++){ //遍历物品
for(int j = i * i; j < n + 1; j++){ //遍历背包
if(dp[j - i*i] != INT_MAX) dp[j] = min(dp[j], dp[j - i*i] + 1);
}
}
return dp[n];
}
};
确定递推公式
如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true,(j < i )。所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。
确定遍历顺序
求组合数:动态规划:518.零钱兑换II
求排列数:动态规划:377. 组合总和 Ⅳ 、动态规划:70. 爬楼梯进阶版(完全背包)
求最小数:动态规划:322. 零钱兑换 、动态规划:279.完全平方数
而本题其实我们求的是排列数,为什么呢。 拿 s = "applepenapple", wordDict = ["apple", "pen"] 举例。"apple", "pen" 是物品,那么我们要求 物品的组合一定是 "apple" + "pen" + "apple" 才能组成 "applepenapple"。"apple" + "apple" + "pen" 或者 "pen" + "apple" + "apple" 是不可以的,那么我们就是强调物品之间顺序。所以说,本题一定是 先遍历 背包,再遍历物品。
class Solution {
public:
bool wordBreak(string s, vector<string>& wordDict) {
unordered_set<string> uset(wordDict.begin(), wordDict.end());
vector<bool> dp(s.size() + 1, false);
dp[0] = true;
for(int j = 1; j < s.size() + 1; j++){ //遍历背包!!!!!!
for(int i = 0; i < j; i++){ //遍历物品!!!!!!
string word = s.substr(i, j - i); //substr(起始位置,截取的个数)!!!!!!!!
auto it = uset.find(word);
if(it != uset.end() && dp[i]) dp[j] = true;
}
}
return dp[s.size()];
}
};
背包问题总结
背包递推公式
问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:
问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:
- 动态规划:494.目标和(opens new window)
- 动态规划:518. 零钱兑换 II(opens new window)
- 动态规划:377.组合总和Ⅳ(opens new window)
- 动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)
问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:
问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:
遍历顺序
01背包
在动态规划:关于01背包问题,你该了解这些! (opens new window)中我们讲解二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。
和动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲解一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。
一维dp数组的背包在遍历顺序上和二维dp数组实现的01背包其实是有很大差异的,大家需要注意!
完全背包
说完01背包,再看看完全背包。
在动态规划:关于完全背包,你该了解这些! (opens new window)中,讲解了纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。
但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
相关题目如下:
- 求组合数:动态规划:518.零钱兑换II(opens new window)
- 求排列数:动态规划:377. 组合总和 Ⅳ (opens new window)、动态规划:70. 爬楼梯进阶版(完全背包)(opens new window)
如果求最小数,那么两层for循环的先后顺序就无所谓了,相关题目如下: