问卷星中问卷设计的一些设置----笔记

这篇博客介绍了如何在问卷编辑中插入图片,并设置图片的缩放比例和排列方式。同时,讲解了如何通过【题目随机设置】功能实现题目分组及随机显示,适用于不同场景的问卷设计,如消费者调查等。此外,还展示了如何通过分页和随机抽取功能灵活控制问卷内容的展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、基本设置——题目中插入图片

1.题目的【编辑框】

不仅可以输入文本,还可以输入图片,链接、音视频。下面以图片为例:

插入图片,图片可以自行设置【缩放比例】,图片可以单张、也可以几张并排,图片下方同时可以添加文本。(适用场景:题目中必须有图片的问卷,如消费者对色彩搭配(需要图片呈现)的喜好等)

效果图:

2.【段落说明】 

 可以将问卷分成几大部分。 

 二、高级设置——【题目随机设置】

适用场景:让问卷中有的题目出现,有的题目不出现。

如让A1-A4(4道题目)、B1-B4、C1-C4、D1-D4随机出现其中任何一组(或两组或三组)。

操作步骤:

在【分页栏】中将A1-A4、B1-B4、C1-C4、D1-D4分别设成单独1页,共4页;

 问卷整体设计部分,即问卷的左上角【题目随机设置】

 随机抽取几页,就随机出现几组。

 

<think>嗯,用户问的问题是关于PC-GAN训练耗时和农户行为模型问卷采集,还有电脑配置的信息。首先,我需要把这两个部分分开来分析,可能用户是想了解这些项目的时间和资源需求,或者如何在自己的华硕飞行堡垒电脑上进行相关的工作。 首先看PC-GAN的部分,训练耗时约3,200 GPU小时,用的是A100×4节点。这里需要解释GPU小时的概念,以及使用多个GPU节点的情况。可能用户不太清楚GPU小时的计算,比如单个GPU的话需要多少时间,或者多个GPU并行后的时间。比如,如果使用4个A100,那么实际时间可能是3200除以4,也就是800小时,但实际中并行效率可能不是线性的,所以可能需要稍微解释一下。 然后是农户行为模型需要1,200份有效问卷。这部分可能涉及问卷设计、发放渠道、数据清洗等步骤。需要估计时间,比如设计问卷需要多久,发放和收集需要多久,以及数据处理的时间。另外,用户提到华硕飞行堡垒i7的配置,可能想知道是否能用这台电脑处理数据。需要分析该电脑的配置,比如CPU型号、内存大小,是否适合进行数据分析或模型训练。 用户可能的需求是什么?可能是在规划项目的时间和资源,或者考虑是否需要升级硬件,或者如何分配任务。比如,PC-GAN需要大量的GPU资源,而华硕飞行堡垒这样的游戏本可能不足以训练这样的模型,可能需要使用云服务或者服务器。而问卷处理部分可能在本地电脑上进行,但需要看具体的数据处理软件和内存需求。 另外,用户可能没有明确说出但潜在的问题是,如何在实际操作中高效完成这两个任务,或者预算和时间上的安排。可能需要给出建议,比如使用云服务来训练PC-GAN,同时在本地处理问卷数据,或者联系专业团队进行问卷收集以提高效率。 还要注意用户提供的电脑配置是华硕飞行堡垒i7,具体型号不同配置可能不同,但一般来说,这种笔记本可能有中端的GPU,比如GTX或RTX系列,但显存可能不足以训练大型GAN模型。需要指出这一点,并建议使用云GPU资源。 总结一下,回答的结构应该是先分点解释PC-GAN的训练时间和资源需求,然后分析农户问卷的时间和步骤,最后评估电脑配置是否适用,并给出建议。</think>我将分两部分为您解读技术需求,并提供硬件适配分析: 一、PC-GAN训练需求解析 1. 算力配置 - 总计算量:3,200 GPU小时(A100×4节点) - 等效换算: $$ \frac{3,200\ \text{小时}}{4\ \text{GPU}} = 800\ \text{实际小时} $$ $$ 800\ \text{小时} \approx 33\ \text{天(连续运行)} $$ 2. 硬件要求 - 推荐配置:NVIDIA A100(40GB显存)×4 - 最低配置:RTX 3090(24GB显存)×4(预计耗时增加30%-50%) 二、农户行为模型实施分析 1. 问卷实施流程 ```mermaid graph TD A[问卷设计] --> B[预调研] B --> C[正式发放] C --> D[数据清洗] D --> E[模型构建] ``` 2. 时间预估(按标准团队): - 设计阶段:2周 - 数据收集:4-8周(视地域分布) - 数据处理:1周 三、华硕飞行堡垒i7适配评估 1. 硬件参数(典型配置): - CPU:i7-11800H(8核16线程) - GPU:RTX 3060(6GB显存) - 内存:16GB DDR4 2. 可行性分析: - PC-GAN训练:不推荐(显存不足,需云平台) - 问卷处理: ✅ SPSS/Python数据分析 ✅ 结构方程建模 ❌ 大规模深度学习(需外接GPU扩展坞) 建议方案: 1. 使用AWS/Ali云按需租用GPU资源 2. 本地设备专注问卷数据处理 3. 考虑分布式数据采集(问卷+线下团队) 注:实际耗时受超参数调整、数据质量、并行效率等多因素影响,建议预留20%缓冲时间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值