聚类算法性能对比:K-means vs DBSCAN vs 层次聚类

聚类算法性能对比:K-means vs DBSCAN vs 层次聚类

关键词:聚类算法、K-means、DBSCAN、层次聚类、性能对比、机器学习、无监督学习

摘要:聚类是无监督学习的核心任务之一,广泛应用于用户分群、图像分割、异常检测等场景。本文将用“分水果”“找朋友”“建家谱”等生活化比喻,从原理、优缺点到实战场景,一步一步对比K-means、DBSCAN、层次聚类三种主流算法。无论你是刚入门的机器学习爱好者,还是需要为项目选择聚类方案的开发者,读完本文都能清晰掌握三种算法的差异与适用场景。


背景介绍

目的和范围

聚类的本质是“物以类聚”:从无标签数据中发现隐含的分组规律。本文聚焦三种最常用的聚类算法——K-means(最经典)、DBSCAN(抗噪声)、层次聚类(可视化强),通过原理拆解、代码实战、场景对比,帮你解决“选哪个”的核心问题。

预期读者

  • 机器学习初学者:想理解聚类算法的底层逻辑
  • 项目开发者:需要为实际数据选择合适的聚类方案
  • 数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值