数据库选型?AI应用架构师的智能数资系统数据库决策指南
引言:智能数资系统的“数据地基”困境
在AI驱动的智能数资系统(Intelligent Data Asset System)中,数据库就像建筑的“地基”——它支撑着整个系统的数据存储、检索、分析和推理,其选型直接决定了系统的性能、扩展性和未来迭代能力。然而,面对层出不穷的数据库类型(关系型、文档型、向量型、图型……),很多AI架构师都会陷入“选择焦虑”:
- 实时推荐系统需要低延迟的向量匹配,选Milvus还是Pinecone?
- 智能知识库要处理海量非结构化文档,用Elasticsearch还是Weaviate?
- 智能决策支持系统需要复杂的OLAP分析,选ClickHouse还是Snowflake?
本文将从AI应用的核心数据需求出发,结合数据库选型的核心维度,通过典型场景的实战案例,为AI架构师提供一套可落地的智能数资系统数据库决策框架。
一、AI应用的核心数据需求:为什么传统数据库不够用?
智能数资系统的本质是“数据+AI模型”的融合,其数据需求与传统业务系统有显著差异。要做好数据库选型,首先必须明确AI应用的四大核心数据需求:

订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



