上下文工程:AI应用架构师提升AI智能体性能的秘密武器

上下文工程:提升AI智能体性能的秘诀

上下文工程:AI应用架构师提升AI智能体性能的秘密武器

引言

背景:当AI智能体陷入"失忆"与"迷茫"

2024年,某头部电商平台上线了新一代智能客服系统。该系统基于GPT-4构建,支持多轮对话、订单查询、售后处理等复杂场景,上线前的封闭测试中准确率达92%。然而,正式上线后却出现了一系列问题:用户抱怨"客服总是忘记我前面说过的话",客服团队反馈"系统经常答非所问,需要人工反复介入",技术团队排查后发现——问题出在上下文管理上

具体表现为:当用户连续咨询3个以上问题(如"查询订单物流→修改收货地址→申请部分退款"),系统会遗漏"修改地址"的关键信息;当对话涉及跨模块操作(如"先咨询商品保修政策,再要求转接人工"),系统无法将保修政策的上下文传递给人工坐席;当用户描述包含多实体信息(如"我买了A商品和B商品,A要退货,B要换货"),系统会混淆两个商品的处理需求。

这个案例并非个例。在AI应用落地过程中,"上下文处理能力"已成为决定智能体性能的核心瓶颈。根据Gartner 2024年报告,65%的企业AI应用失败源于"上下文理解不足",远超模型精度(23%)和数据质量(12%)。

为什么会出现这种情况?随着大语言模型(LLM)能力的提升,开发者往往过度关注模型选型(“用GPT-4还是Claude?”)和提示词优化(“如何写更好的prompt?”),却忽视了系统性的上下文工程——即如何在智能体的全生命周期中,动态构建、维护、优化和利用上下文,让AI始终"记得关键信息

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值