目录
二叉树
94. 二叉树的中序遍历 简单
给定一个二叉树的根节点 root
,返回 它的 中序 遍历 。
示例 1:
输入:root = [1,null,2,3]
输出:[1,3,2]
示例 2:
输入:root = []
输出:[]
示例 3:
输入:root = [1]
输出:[1]
提示:
-
树中节点数目在范围
[0, 100]
内 -
-100 <= Node.val <= 100
进阶: 递归算法很简单,你可以通过迭代算法完成吗?
//方法一:递归
//定义 inorder(root) 表示当前遍历到 root 节点的答案,那么按照定义,我们只要递归调用 inorder(root.left) 来遍历 root 节点的左子树,然后将 root 节点的值加入答案,再递归调用inorder(root.right) 来遍历 root 节点的右子树即可,递归终止的条件为碰到空节点。
//时间复杂度:O(n),其中 n 为二叉树节点的个数。二叉树的遍历中每个节点会被访问一次且只会被访问一次。
//空间复杂度:O(n)。空间复杂度取决于递归的栈深度,而栈深度在二叉树为一条链的情况下会达到 O(n) 的级别。
class Solution {
public:
//!!!!!!!!!注意res容器地址的传入 要不然结果不对!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
void inorder(TreeNode* root, vector<int>& res) {
//当当前节点 root 为空时,递归返回
if (!root) {
return;
}
// 递归遍历左子树
inorder(root->left, res);
// 访问当前节点(根节点)
res.push_back(root->val);
// 递归遍历右子树
inorder(root->right, res);
}
vector<int> inorderTraversal(TreeNode* root) {
// 初始化结果数组
vector<int> res;
// 调用递归函数开始遍历
inorder(root, res);
// 返回结果数组
return res;
}
};
//方法二:迭代
//方法一的递归函数我们也可以用迭代的方式实现,两种方式是等价的,区别在于递归的时候隐式地维护了一个栈,而我们在迭代的时候需要显式地将这个栈模拟出来,其他都相同,具体实现可以看下面的代码。
//时间复杂度:O(n),其中 n 为二叉树节点的个数。二叉树的遍历中每个节点会被访问一次且只会被访问一次。
//空间复杂度:O(n)。空间复杂度取决于栈深度,而栈深度在二叉树为一条链的情况下会达到 O(n) 的级别。
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
//存储遍历结果的数组。
vector<int> res;
//辅助栈,用于存储待访问的节点。
stack<TreeNode*> stk;
while (root != nullptr || !stk.empty()) {
// 步骤1:遍历左子树,将所有左节点压入栈
//这确保了左子树的节点按深度优先顺序被压入栈。
while (root != nullptr) {
//循环将当前节点 root 及其所有左子节点压入栈,直到左子树为空(root == nullptr)。
stk.push(root);
root = root->left;
}
// 步骤2:弹出栈顶节点(当前最左侧节点),访问其值
root = stk.top();
stk.pop();
//将其值加入结果数组 res
res.push_back(root->val);
// 步骤3:转向右子树
//将 root 指向弹出节点的右子树,重复上述过程。
//若右子树为空,下次循环会继续从栈中弹出节点。
root = root->right;
}
return res;
}
};
//方法三:Morris 中序遍历
/*
Morris 遍历算法整体步骤如下(假设当前遍历到的节点为 x):
1. 如果 x 无左孩子,先将 x 的值加入答案数组,再访问 x 的右孩子,即 x=x.right。
2. 如果 x 有左孩子,则找到 x 左子树上最右的节点(即左子树中序遍历的最后一个节点,x 在中序遍历中的前驱节点),我们记为 predecessor。根据 predecessor 的右孩子是否为空,进行如下操作。
--如果 predecessor 的右孩子为空,则将其右孩子指向 x,然后访问 x 的左孩子,即 x=x.left。
--如果 predecessor 的右孩子不为空,则此时其右孩子指向 x,说明我们已经遍历完 x 的左子树,我们将 predecessor 的右孩子置空,将 x 的值加入答案数组,然后访问 x 的右孩子,即 x=x.right。
*/
//时间复杂度:O(n),其中 n 为二叉树的节点个数。Morris 遍历中每个节点会被访问两次,因此总时间复杂度为 O(2n)=O(n)。
//空间复杂度:O(1)。
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> res;
//predecessor:用于寻找当前节点的前驱节点(左子树的最右节点)。
TreeNode *predecessor = nullptr;
while (root != nullptr) {
if (root->left != nullptr) {
// 寻找 predecessor:左子树的最右节点
predecessor = root->left;
//predecessor->right != root 确保不陷入循环(处理已建立的线索时)
while (predecessor->right != nullptr && predecessor->right != root) {
predecessor = predecessor->right;
}
// 情况1:predecessor的右指针为空,建立线索
//这一步相当于在中序遍历中标记 “遍历完左子树后应该回到 root”
if (predecessor->right == nullptr) {
// 建立线索
predecessor->right = root;
// 继续遍历左子树
root = root->left;
}
// 情况2:predecessor的右指针指向root,说明左子树已遍历完
// 当再次遇到 predecessor->right == root 时,说明左子树已遍历完。
else {
// 访问当前节点
res.push_back(root->val);
// 断开线索,恢复树结构
predecessor->right = nullptr;
// 转向右子树
root = root->right;
}
}
// 如果没有左子树,直接访问当前节点并转向右子树
else {
res.push_back(root->val);
root = root->right;
}
}
return res;
}
};
104. 二叉树的最大深度 简单
给定一个二叉树 root
,返回其最大深度。
二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:3
示例 2:
输入:root = [1,null,2]
输出:2
提示:
-
树中节点的数量在
[0, 104]
区间内。 -
-100 <= Node.val <= 100
//方法一:深度优先搜索
//如果我们知道了左子树和右子树的最大深度 l 和 r,那么该二叉树的最大深度即为max(l,r)+1
//时间复杂度:O(n),其中 n 为二叉树节点的个数。每个节点在递归中只被遍历一次。
//空间复杂度:O(height),其中 height 表示二叉树的高度。递归函数需要栈空间,而栈空间取决于递归的深度,因此空间复杂度等价于二叉树的高度。
class Solution {
public:
int maxDepth(TreeNode* root) {
if (root == nullptr) return 0;
return max(maxDepth(root->left), maxDepth(root->right)) + 1;
}
};
//方法二:广度优先搜索
//此时我们广度优先搜索的队列里存放的是「当前层的所有节点」。每次拓展下一层的时候,不同于广度优先搜索的每次只从队列里拿出一个节点,我们需要将队列里的所有节点都拿出来进行拓展,这样能保证每次拓展完的时候队列里存放的是当前层的所有节点,即我们是一层一层地进行拓展,最后我们用一个变量 ans 来维护拓展的次数,该二叉树的最大深度即为 ans。
//时间复杂度:O(n),其中 n 为二叉树的节点个数。与方法一同样的分析,每个节点只会被访问一次。
//空间复杂度:此方法空间的消耗取决于队列存储的元素数量,其在最坏情况下会达到 O(n)。
class Solution {
public:
int maxDepth(TreeNode* root) {
if (root == nullptr) return 0;
//队列初始化:使用队列 Q 存储待处理的节点,初始时队列中只有根节点。
queue<TreeNode*> Q;
Q.push(root);
//深度计数器:ans 记录当前遍历的层数(初始为 0)。
int ans = 0;
//队列非空
while (!Q.empty()) {
//sz = Q.size() 表示当前层的节点总数。
int sz = Q.size();
//遍历当前层:
while (sz > 0) {
//取出队首节点 node,并将其左右子节点(若存在)加入队列。
TreeNode* node = Q.front();
// 将当前节点从队列中移除。
Q.pop();
if (node->left) Q.push(node->left);
if (node->right) Q.push(node->right);
//sz 递减,直到处理完当前层的所有节点
sz -= 1;
}
//处理完一层后,ans 加 1,表示深度增加 1。
ans += 1;
}
return ans;
}
};