良心发现,时隔一年再回首莫比乌斯反演(公式性质证明+题目练习)

寒假疫情期间跟着lmm学了一遍,完全是懵逼到底状态,以至于后面考到或者做到相关知识的题目,完全是非洲人。今天跟着h老师重新学了一遍,虽然可能自己还是不会推🍔,但至少看得懂了吧

莫比乌斯反演


莫比乌斯反演形式的式子形如 F ( n ) = ∑ d ∣ n f ( d ) F(n)=\sum_{d|n}f(d) F(n)=dnf(d),一般而言 F ( n ) F(n) F(n) 是非常好求的,而 f ( x ) f(x) f(x) 即为要求的信息。

引入

F ( n ) = ∑ d ∣ n f ( d ) F(n)=\sum_{d|n}f(d) F(n)=dnf(d)
通过这个例子,可以暴力打出下列表

F ( 1 ) F(1) F(1) f ( 1 ) f(1) f(1)
F ( 2 ) F(2) F(2) f ( 1 ) + f ( 2 ) f(1)+f(2) f(1)+f(2)
F ( 3 ) F(3) F(3) f ( 1 ) + f ( 3 ) f(1)+f(3) f(1)+f(3)
F ( 4 ) F(4) F(4) f ( 1 ) + f ( 2 ) + f ( 4 ) f(1)+f(2)+f(4) f(1)+f(2)+f(4)
F ( 5 ) F(5) F(5) f ( 1 ) + f ( 5 ) f(1)+f(5) f(1)+f(5)
F ( 6 ) F(6) F(6) f ( 1 ) + f ( 2 ) + f ( 3 ) + f ( 6 ) f(1)+f(2)+f(3)+f(6) f(1)+f(2)+f(3)+f(6)
F ( 7 ) F(7) F(7) f ( 1 ) + f ( 7 ) f(1)+f(7) f(1)+f(7)
F ( 8 ) F(8) F(8) f ( 1 ) + f ( 2 ) + f ( 4 ) + f ( 8 ) f(1)+f(2)+f(4)+f(8) f(1)+f(2)+f(4)+f(8)

转换一下,得到新表

f ( 1 ) f(1) f(1) F ( 1 ) F(1) F(1)
f ( 2 ) f(2) f(2) F ( 2 ) − F ( 1 ) F(2)-F(1) F(2)F(1)
f ( 3 ) f(3) f(3) F ( 3 ) − F ( 1 ) F(3)-F(1) F(3)F(1)
f ( 4 ) f(4) f(4) F ( 4 ) − F ( 2 ) F(4)-F(2) F(4)F(2)
f ( 5 ) f(5) f(5) F ( 5 ) − F ( 1 ) F(5)-F(1) F(5)F(1)
f ( 6 ) f(6) f(6) F ( 6 ) − F ( 3 ) − F ( 2 ) + F ( 1 ) F(6)-F(3)-F(2)+F(1) F(6)F(3)F(2)+F(1)
f ( 7 ) f(7) f(7) F ( 7 ) − F ( 1 ) F(7)-F(1) F(7)F(1)
f ( 8 ) f(8) f(8) F ( 8 ) − F ( 4 ) F(8)-F(4) F(8)F(4)

看看能观察到 f f f F F F之间存在什么规律??
🚨 重点关注 f ( 1 ) , f ( 4 ) , f ( 6 ) , f ( 8 ) f(1),f(4),f(6),f(8) f(1),f(4),f(6),f(8)
🧀 f ( 6 ) = F ( 6 1 ) − F ( 6 2 ) − F ( 6 3 ) + F ( 6 6 ) f(6)=F(\frac{6}{1})-F(\frac{6}{2})-F(\frac{6}{3})+F(\frac{6}{6}) f(6)=F(16)F(26)F(36)+F(66)
在这里插入图片描述

发现规律 其实是知道公式了

F ( n d ) F(\frac{n}{d}) F(dn) d d d质因数分解 p 1 k 1 . . . p i k i p_1^{k_1}...p_i^{k_i} p1k1...piki,如果各质数指数均为 1 1 1,则该 F ( n d ) F(\frac{n}{d}) F(dn)才会存在 ,特别地,当 d = 1 d=1 d=1时也一定存在

🍗: f ( 8 ) = F ( 8 1 ) − F ( 8 2 ) f(8)=F(\frac{8}{1})-F(\frac{8}{2}) f(8)=F(18)F(28)
F ( 8 1 ) : 1 F(\frac{8}{1}):1 F(18)1存在
F ( 8 2 ) : 2 F(\frac{8}{2}):2 F(28)2质因数分解 2 1 2^1 21,存在
F ( 2 ) = F ( 8 4 ) : 4 F(2)=F(\frac{8}{4}):4 F(2)=F(48)4质因数分解 2 2 2^2 22,不存在
F ( 1 ) = F ( 8 8 ) : 8 F(1)=F(\frac{8}{8}):8 F(1)=F(88)8质因数分解 2 3 2^3 23,不存在

F ( n d ) F(\frac{n}{d}) F(dn)前面的符号取决于 d d d所含质因子的个数/种类的奇偶性, ( − 1 ) k (-1)^k (1)k

🍗: f ( 6 ) = F ( 6 1 ) − F ( 6 2 ) − F ( 6 3 ) + F ( 6 6 ) f(6)=F(\frac{6}{1})-F(\frac{6}{2})-F(\frac{6}{3})+F(\frac{6}{6}) f(6)=F(16)F(26)F(36)+F(66)
F ( 6 1 ) : 1 F(\frac{6}{1}):1 F(16)1不含任何质因子,系数为 ( − 1 ) 0 = 1 (-1)^0=1 (1)0=1
F ( 6 2 ) : 2 F(\frac{6}{2}):2 F(26)2含质因子 2 2 2,系数为 ( − 1 ) 1 = − 1 (-1)^1=-1 (1)1=1
F ( 6 3 ) : 3 F(\frac{6}{3}):3 F(36)3含质因子 3 3 3,系数为 ( − 1 ) 1 = − 1 (-1)^1=-1 (1)1=1
F ( 6 6 ) : 6 F(\frac{6}{6}):6 F(66)6含质因子 2 , 3 2,3 2,3,系数为 ( − 1 ) 2 = 1 (-1)^2=1 (1)2=1
在这里插入图片描述


公式

引入中发现的规律经过数学 提炼加工打磨 规范,将 ( − 1 ) k (-1)^k (1)k定义为 μ ( i ) \mu (i) μ(i)
便成为了一个优美的🍔
F ( n ) = ∑ d ∣ n f ( n ) ⇒ f ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) F(n)=\sum_{d|n}f(n)\Rightarrow f(n)=\sum_{d|n}\mu (d)F(\frac{n}{d}) F(n)=dnf(n)f(n)=dnμ(d)F(dn)

其中 μ ( d ) \mu(d) μ(d)为莫比乌斯函数,定义如下:

  1. d = 1 , μ ( d ) = 1 d=1,\mu(d)=1 d=1,μ(d)=1
  2. d d d能改写为 p 1 p 2 . . . p k p_1p_2...p_k p1p2...pk互异质数的积,则 μ ( d ) = ( − 1 ) k \mu(d)=(-1)^k μ(d)=(1)k
  3. o t h e r w i s e otherwise otherwise,其余情况 μ ( d ) = 0 \mu(d)=0 μ(d)=0

性质

  • 性质一:
    对于任意的正整数 n n n有:
    ∑ d ∣ n μ ( d ) = { 1 ( n = 1 ) 0 ( n ≠ 1 ) \sum_{d|n}\mu(d)=\left\{ \begin{aligned} 1&&(n=1)\\ 0&&(n≠1) \end{aligned} \right. dnμ(d)={10(n=1)(n=1)
    证明:
    Ⅰ. 当 n = 1 n=1 n=1时, μ ( 1 ) = 1 \mu(1)=1 μ(1)=1,显然成立
    Ⅱ. 当 n ≠ 1 n≠1 n=1时,将 n n n质因数分解为 p 1 a 1 p 2 a 2 . . . p k a i p_1^{a_1}p_2^{a_2}...p_k^{a_i} p1a1p2a2...pkai
    只有所有质因子的指数都为 1 1 1的因数的 μ \mu μ值不为 0 0 0
    则其中有 x x x个不同质因子的个数为 C k x C_k^x Ckx,于是有
    ∑ d ∣ n μ ( d ) = C k 0 − C k 1 + C k 2 . . . . = ∑ i = 0 k ( − 1 ) i C k i \sum_{d|n}\mu(d)=C_k^0-C_k^1+C_k^2....=\sum_{i=0}^k(-1)^iC_k^i dnμ(d)=Ck0Ck1+Ck2....=i=0k(1)iCki
    🧀二项式展开公式为:
    ( X + Y ) n = ∑ i = 0 n C n i X i Y n − i (X+Y)^n=\sum_{i=0}^nC_n^iX^iY^{n-i} (X+Y)n=i=0nCniXiYni
    X = 1 , Y = − 1 X=1,Y=-1 X=1,Y=1带入即可得到:
    ∑ i = 0 k ( − 1 ) i C k i = [ 1 + ( − 1 ) ] k = 0 \sum_{i=0}^k(-1)^iC_k^i=[1+(-1)]^k=0 i=0k(1)iCki=[1+(1)]k=0

  • 性质二:
    对于任意的正整数 n n n有:
    ∑ d ∣ n μ ( d ) d = ϕ ( n ) n \sum_{d|n}\frac{\mu(d)}{d}=\frac{\phi(n)}{n} dndμ(d)=nϕ(n)
    证明:
    ∑ d ∣ n μ ( d ) d = ϕ ( n ) n ⇔ n × ∑ d ∣ n μ ( d ) d = ϕ ( n ) \sum_{d|n}\frac{\mu(d)}{d}=\frac{\phi(n)}{n}\Leftrightarrow n\times \sum_{d|n}\frac{\mu(d)}{d}=\phi(n) dndμ(d)=nϕ(n)n×dndμ(d)=ϕ(n)
    F ( n ) = n , f ( n ) = ϕ ( n ) F(n)=n,f(n)=\phi(n) F(n)=n,f(n)=ϕ(n),则有
    f ( n ) = n × ∑ d ∣ n μ ( d ) d = ∑ d ∣ n μ ( d ) n d = ∑ d ∣ n μ ( d ) F ( n d ) f(n)=n\times \sum_{d|n}\frac{\mu(d)}{d}=\sum_{d|n}\mu(d)\frac{n}{d}=\sum_{d|n}\mu(d)F(\frac{n}{d}) f(n)=n×dndμ(d)=dnμ(d)dn=dnμ(d)F(dn)
    🚨不要忘记 f ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d}) f(n)=dnμ(d)F(dn)成立的前提是 F ( n ) = ∑ d ∣ n f ( d ) F(n)=\sum_{d|n}f(d) F(n)=dnf(d)
    所以如果性质二要想成立,就必须再证明 n = ∑ d ∣ n ϕ ( d ) n=\sum_{d|n}\phi(d) n=dnϕ(d)
    考虑从物理意义角度出发
    k ∈ [ 1 , n ] , g c d ( n , k ) = d ⇒ g c d ( n / d , k ) = 1 k∈[1,n],gcd(n,k)=d\Rightarrow gcd(n/d,k)=1 k[1,n]gcd(n,k)=dgcd(n/d,k)=1,将 k k k分到 C n / d C_{n/d} Cn/d类中
    🍗: n = 8 n=8 n=8
    { 1 , 3 , 5 , 7 g c d = 1 ϕ ( 8 1 ) = 4 2 , 6 g c d = 2 ϕ ( 8 2 ) = 2 4 g c d = 4 ϕ ( 8 4 ) = 1 8 g c d = 8 ϕ ( 8 8 ) = 1 \left\{ \begin{aligned} 1,3,5,7&&gcd=1&&\phi(\frac{8}{1})=4\\ 2,6&&gcd=2&&\phi(\frac{8}{2})=2\\ 4&&gcd=4&&\phi(\frac{8}{4})=1\\ 8&&gcd=8&&\phi(\frac{8}{8})=1 \end{aligned} \right. 1,3,5,72,648gcd=1gcd=2gcd=4gcd=8ϕ(18)=4ϕ(28)=2ϕ(48)=1ϕ(88)=1
    在这里插入图片描述

  • 性质三:
    莫比乌斯函数是一个积性函数
    但我不会证明
    在这里插入图片描述

🧀
积性函数的定义:对于任意互质的整数 a a a b b b有性质 f ( a b ) = f ( a ) f ( b ) f(ab)=f(a)f(b) f(ab)=f(a)f(b)的数论函数
完全积性函数定义:对于任意的整数 a a a b b b f ( a b ) = f ( a ) f ( b ) f(ab)=f(a)f(b) f(ab)=f(a)f(b)的数论函数
积性函数的性质:

  1. f ( 1 ) = 1 f(1)=1 f(1)=1
  2. 积性函数的前缀和也是积性函数

模板

因为莫比乌斯函数是一个积性函数,我们就可以线性筛求出其值
由此联想到我们以前会的求质数的欧拉筛法

void sieve() {
	mu[1] = 1;
	for( int i = 2;i <= n;i ++ ) {
		if( ! vis[i] ) {
			vis[i] = 1;
			mu[i] = -1;
			prime[++ cnt] = i;
		}
		for( int j = 1;j <= cnt && i * prime[j] <= n;j ++ ) {
			vis[i * prime[j]] = 1;
			if( i % prime[j] == 0 ) {
				mu[i * prime[j]] = 0; //i*prime[j]这个数至少含有prime[j]^2 
				break;
			}
			mu[i * prime[j]] = - mu[i];//多了prime[j]这一种新的质因子 所以要与原来取相反数
			/*
			只要i*prime[j]含有pi^2
			早晚都会进if语句
			*/ 
		}
	}
}

公式证明

说到底,好像我们似乎貌似仿佛并没有证明这个定理,就直接提上裤子跑了


  • 形式一
    证明:
    F ( n ) = ∑ d ∣ n f ( n ) ⇒ f ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) = ∑ d ∣ n μ ( d ) ∑ k ∣ n d f ( k ) F(n)=\sum_{d|n}f(n)\Rightarrow f(n)=\sum_{d|n}\mu (d)F(\frac{n}{d})=\sum_{d|n}\mu(d)\sum_{k|\frac{n}{d}}f(k) F(n)=dnf(n)f(n)=dnμ(d)F(dn)=dnμ(d)kdnf(k)
    d ∣ n , k ∣ n d ⇒ k ∣ n {d|n,k|\frac{n}{d}\Rightarrow k|n} dn,kdnkn,可以感性理解 d d d取不同值, k k k会把 n n n所有因数都枚举到
    于是可以把 k k k固定下来,更改 d d d的取值范围,类似于两层循环顺序的互调??
    在这里插入图片描述

= ∑ k ∣ n f ( k ) ∑ d ∣ n k μ ( d ) =\sum_{k|n}f(k)\sum_{d|\frac{n}{k}}\mu(d) =knf(k)dknμ(d)
将性质一的结论运用上, ∑ d ∣ n k μ ( d ) \sum_{d|\frac{n}{k}}\mu(d) dknμ(d)当且仅当 n k = 1 \frac{n}{k}=1 kn=1时,求和莫比乌斯函数值 ≠ 0 ≠0 =0
= f ( n ) =f(n) =f(n)
证明过程用到了性质一,性质一本身其实是独立于公式的,所以并不是伪证


  • 形式二
    F ( n ) = ∑ n ∣ d f ( d ) ⇒ f ( n ) = ∑ n ∣ d μ ( d n ) F ( d ) F(n)=\sum_{n|d}f(d)\Rightarrow f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d) F(n)=ndf(d)f(n)=ndμ(nd)F(d)
    证明:
    与形式一的证明大致相同
    k = d n k=\frac{d}{n} k=nd
    = ∑ k = 1 + ∞ μ ( k ) F ( n × k ) = ∑ k = 1 + ∞ μ ( k ) ∑ n × k ∣ p f ( p ) = ∑ n ∣ p f ( p ) ∑ k ∣ p n μ ( k ) =\sum_{k=1}^{+∞}\mu(k)F(n\times k)=\sum_{k=1}^{+∞}\mu(k)\sum_{n\times k|p}f(p)=\sum_{n|p}f(p)\sum_{k|\frac{p}{n}}\mu(k) =k=1+μ(k)F(n×k)=k=1+μ(k)n×kpf(p)=npf(p)knpμ(k)
    在这里插入图片描述

当且仅当 p n = 1 , p = n \frac{p}{n}=1,p=n np=1,p=n ∑ k ∣ n p μ ( k ) = 1 \sum_{k|\frac{n}{p}}\mu(k)=1 kpnμ(k)=1,其余全为 0 0 0
= f ( n ) =f(n) =f(n)
一般这种形式更常用一些


莫比乌斯函数前缀和

基本上莫比乌斯反演的题目都会和分块绑定在一起,此时的莫比乌斯函数就需要进行前缀和
接下来就让我们一起来深挖一下分块部分
🍗
Q = ∑ i ∣ d μ ( i ) ⌊ n i ⌋ Q=\sum_{i|d}\mu(i)\lfloor{\frac{n}{i}}\rfloor Q=idμ(i)in
不妨设 n = 10 n=10 n=10,如果按照 ⌊ n i ⌋ \lfloor{\frac{n}{i}}\rfloor in 1 ≤ i ≤ n 1\le i\le n 1in进行分类
则有 10 = { 1 } , 5 = { 2 } , 3 = { 3 } , 2 = { 4 , 5 } , 1 = { 6 , 7 , 8 , 9 , 10 } 10=\{1\},5=\{2\},3=\{3\},2=\{4,5\},1=\{6,7,8,9,10\} 10={1},5={2},3={3},2={4,5},1={6,7,8,9,10}
反映在平面直角坐标系上,看看是什么样👀
在这里插入图片描述
按照 x \sqrt{x} x 做分割线,前半段的 x x x最多只有 x \sqrt{x} x 段,后半段的 y y y最多只有 x \sqrt{x} x
在这里插入图片描述
拼接在一起,则 ⌊ n i ⌋ \lfloor{\frac{n}{i}}\rfloor in最多只有 2 n 2\sqrt{n} 2n 个取值
n / i n/i n/i即为 i i i所在的块, n / ( n / i ) n/(n/i) n/(n/i)则为该块右端点值
在这里插入图片描述

block = n / i;
r = n / block;

因为 [ i , n / ( n / i ) ] [i,n/(n/i)] [i,n/(n/i)]这一段的 ⌊ n i ⌋ \lfloor{\frac{n}{i}}\rfloor in均相等
所以我们就可以对 μ \mu μ进行前缀和,直接 O ( 1 ) O(1) O(1)计算出这一段区间的 s u m sum sum
就不必再老实地一个一个往后推
老实人永远会被出题人吊起来抽
这个思想会在后面的题里反复出现,所以提前放出来

一般情况下,莫比乌斯反演后都是求 f ( 1 ) f(1) f(1) 因为这个时候 f ( 1 ) = ∑ i = 1 i n f μ ( i ) F ( i ) f(1)=\sum_{i=1}^{inf}\mu(i)F(i) f(1)=i=1infμ(i)F(i) 才能连续地整除分块

i n f inf inf 是取决于 F F F 函数在什么时候开始就一直取值为 0 0 0,后面的信息没有贡献即可停止枚举


题目练习

完全平方数

  • solution

考虑二分答案,转化为求 [ 1 , x ] [1,x] [1,x]之间的无平方因子的个数
t o t = 0 tot=0 tot=0个质数乘积的平方的倍数的数的个数( 1 1 1的倍数)
− 1 -1 1个质数乘积的平方的倍数的数的个数( 4 [ 2 2 ] 4[2^2] 4[22]的倍数, 9 [ 3 2 ] 9[3^2] 9[32]的倍数…)
+ 2 +2 +2个质数乘积的平方的倍数的数的个数( 36 [ ( 2 × 3 ) 2 ] 36[(2\times 3)^2] 36[(2×3)2]的倍数…)
发现每个乘积前面的系数刚好是 μ ( i ) \mu(i) μ(i)
🍗: μ ( 3 ) = − 1 \mu(3)=-1 μ(3)=1,故 9 9 9对答案的贡献为负, μ ( 6 ) = 1 \mu(6)=1 μ(6)=1,故 36 36 36对答案的贡献为正
x x x以内的 i 2 i^2 i2的个数为 x i 2 \frac{x}{i^2} i2x
⇒ t o t ( x ) = ∑ i = 1 x μ ( i ) x i 2 \Rightarrow tot(x)=\sum_{i=1}^{\sqrt{x}}\mu(i)\frac{x}{i^2} tot(x)=i=1x μ(i)i2x
这道题仅是莫比乌斯函数的运用,并非莫比乌斯反演
在这里插入图片描述

  • code
#include <cstdio>
#define int long long
#define maxn 1000005
int T, k, cnt;
int mu[maxn], prime[maxn];
bool vis[maxn];

void init() {
	mu[1] = 1;
	for( int i = 2;i < maxn;i ++ ) {
		if( ! vis[i] ) mu[i] = -1, prime[++ cnt] = i;
		for( int j = 1;j <= cnt && i * prime[j] < maxn;j ++ ) {
			vis[i * prime[j]] = 1;
			if( i % prime[j] == 0 ) {
				mu[i * prime[j]] = 0;
				break;
			}
			mu[i * prime[j]] = -mu[i];
		}
	}	
}

int check( int x ) {
	int ans = 0;
	for( int i = 1;i * i <= x;i ++ )
		ans += x / ( i * i ) * mu[i];
	return ans;
}

signed main() {
	init();
	scanf( "%lld", &T );
	while( T -- ) {
		scanf( "%lld", &k );
		int l = 1, r = ( k << 1 );
		while( l <= r ) {
			int mid = ( l + r ) >> 1;
			if( check( mid ) >= k ) r = mid - 1;
			else l = mid + 1;
		}
		if( check( l ) == k ) printf( "%lld\n", l );
		else printf( "%lld\n", r );
	}
	return 0;
}

[HAOI2011]Problemb

  • solution

a ≤ x ≤ b , c ≤ y ≤ d a\le x\le b,c\le y\le d axb,cyd二维差分成四个询问
每次询问 1 ≤ x ≤ n , 1 ≤ y ≤ m 1\le x\le n,1\le y\le m 1xn,1ym g c d ( x , y ) = k gcd(x,y)=k gcd(x,y)=k的数对数量
然后再转化为 1 ≤ x ≤ n k , 1 ≤ y ≤ m k 1\le x\le \frac{n}{k},1\le y\le \frac{m}{k} 1xkn,1ykm内的互质的数对数量

定义 f ( i ) : g c d ( x , y ) = i f(i):gcd(x,y)=i f(i):gcd(x,y)=i的数对数量, F ( i ) : i ∣ g c d ( x , y ) F(i):i|gcd(x,y) F(i):igcd(x,y)的数对数数量
( 1 ≤ x ≤ n , 1 ≤ y ≤ m ) (1\le x\le n,1\le y\le m) (1xn,1ym)

⇒ F ( i ) = ⌊ n i ⌋ ⌊ m i ⌋ ⇒ f ( i ) = ∑ i ∣ d μ ( d i ) F ( i ) = ∑ i ∣ d μ ( d i ) ⌊ n i ⌋ ⌊ m i ⌋ \Rightarrow F(i)=\lfloor{\frac{n}{i}}\rfloor\lfloor{\frac{m}{i}}\rfloor\Rightarrow f(i)=\sum_{i|d}\mu(\frac{d}{i})F(i)=\sum_{i|d}\mu(\frac{d}{i})\lfloor{\frac{n}{i}}\rfloor\lfloor{\frac{m}{i}}\rfloor F(i)=inimf(i)=idμ(id)F(i)=idμ(id)inim
🧀 ⌊ n i ⌋ ⌊ m i ⌋ \lfloor{\frac{n}{i}}\rfloor\lfloor{\frac{m}{i}}\rfloor inim其实是一段一段的区间,最多 2 ( n + m ) 2(\sqrt{n}+\sqrt{m}) 2(n +m )个,从这里入手枚举
那么就需要对前面的 ∑ i ∣ d μ ( d i ) \sum_{i|d}\mu(\frac{d}{i}) idμ(id)前缀和

  • code
#include <cstdio>
#include <iostream>
using namespace std;
#define int long long
#define maxn 50005
int n, a, b, c, d, k, cnt;
bool vis[maxn];
int prime[maxn], mu[maxn], pre[maxn];

void init() {
	mu[1] = 1;	
	for( int i = 2;i < maxn;i ++ ) {
		if( ! vis[i] ) prime[++ cnt] = i, mu[i] = -1;
		for( int j = 1;j <= cnt && i * prime[j] < maxn;j ++ ) {
			vis[i * prime[j]] = 1;
			if( i % prime[j] == 0 ) {
				mu[i * prime[j]] = 0;
				break;
			}
			mu[i * prime[j]] = -mu[i];
		}
	}
	for( int i = 1;i < maxn;i ++ ) pre[i] = pre[i - 1] + mu[i];
}

int calc( int n, int m ) {
	if( n > m ) swap( n, m );
	int last, ans = 0;
	for( int i = 1;i <= n;i = last + 1 ) {
		last = min( n / ( n / i ), m / ( m / i ) );
		ans += ( pre[last] - pre[i - 1] ) * ( n / i ) * ( m / i );
	}
	return ans;
}

signed main() {
	init();
	scanf( "%lld", &n );
	for( int i = 1, a, b, c, d, k;i <= n;i ++ ) {
		scanf( "%lld %lld %lld %lld %lld", &a, &b, &c, &d, &k );
		a --, c --;
		a /= k, b /= k, c /= k, d /= k;
		printf( "%lld\n", calc( b, d ) - calc( a, d ) - calc( b, c ) + calc( a, c ) );
	}
	return 0;
}

YY的GCD

  • solution

既然要求 g c d ( x , y ) gcd(x,y) gcd(x,y)为质数,而且发现这道题跟上一道problem b很像
先枚举质数,剩下的不就是求 1 ≤ x ≤ n , 1 ≤ y ≤ m , g c d ( n , m ) = 1 1\le x\le n,1\le y\le m,gcd(n,m)=1 1xn,1ym,gcd(n,m)=1的数对数量??

定义 f ( i ) : g c d ( x , y ) = i f(i):gcd(x,y)=i f(i):gcd(x,y)=i的数对数量, F ( i ) : i ∣ g c d ( x , y ) F(i):i|gcd(x,y) F(i):igcd(x,y)的数对数数量
( 1 ≤ x ≤ n , 1 ≤ y ≤ m ) (1\le x\le n,1\le y\le m) (1xn,1ym)
F ( i ) = ⌊ n i ⌋ ⌊ m i ⌋ ⇒ f ( i ) = ∑ i ∣ d μ ( d i ) F ( d ) = ∑ i ∣ d μ ( d i ) ⌊ n d ⌋ ⌊ m d ⌋ F(i)=\lfloor{\frac{n}{i}}\rfloor\lfloor{\frac{m}{i}}\rfloor\Rightarrow f(i)=\sum_{i|d}\mu(\frac{d}{i})F(d)=\sum_{i|d}\mu(\frac{d}{i})\lfloor{\frac{n}{d}}\rfloor\lfloor{\frac{m}{d}}\rfloor F(i)=inimf(i)=idμ(id)F(d)=idμ(id)dndm🚨 g c d ( x , y ) = i gcd(x,y)=i gcd(x,y)=i的质数已经提出来枚举了
⇒ a n s = ∑ p m i n ( n , m ) f ( 1 ) = ∑ p m i n ( n , m ) ∑ d = 1 m i n ( n , m ) μ ( d ) ⌊ n d × p ⌋ ⌊ m d × p ⌋ \Rightarrow ans=\sum_{p}^{min(n,m)}f(1)=\sum_{p}^{min(n,m)}\sum_{d=1}^{min(n,m)}\mu(d)\lfloor{\frac{n}{d\times p}}\rfloor\lfloor{\frac{m}{d\times p}}\rfloor ans=pmin(n,m)f(1)=pmin(n,m)d=1min(n,m)μ(d)d×pnd×pm
如果止步于此,获得的只有美丽的黑色

k = d × p k=d\times p k=d×p,则 p = k / d p=k/d p=k/d
⇒ a n s = ∑ k m i n ( n , m ) ⌊ n k ⌋ ⌊ m k ⌋ ∑ p ∣ k μ ( k p ) \Rightarrow ans=\sum_{k}^{min(n,m)}\lfloor{\frac{n}{k}}\rfloor\lfloor{\frac{m}{k}}\rfloor\sum_{p|k}\mu(\frac{k}{p}) ans=kmin(n,m)knkmpkμ(pk)

最后就只剩下对 ∑ p ∣ k μ ( k p ) \sum_{p|k}\mu(\frac{k}{p}) pkμ(pk)进行前缀和的处理
这里的处理略微不同于上一道题
可以通过暴力枚举质因子,对质因子的倍数进行 μ \mu μ的累加,再前缀和处理出来
在这里插入图片描述

  • code
    遇得到哦🙄
    define int long long让我直接慢了1s多,导致 T T T了,只能老老实实改long long才能顺利 A C AC AC
#include <cstdio>
#include <iostream>
using namespace std;
#define maxn 10000005
int T, cnt;
int sum[maxn], mu[maxn], prime[maxn];
long long pre[maxn];
bool vis[maxn];

void init( int n ) {
	mu[1] = 1;
	for( int i = 2;i <= n;i ++ ) {
		if( ! vis[i] ) prime[++ cnt] = i, mu[i] = -1;
		for( int j = 1;j <= cnt && i * prime[j] < maxn;j ++ ) {
			vis[i * prime[j]] = 1;
			if( i % prime[j] == 0 ) {
				mu[i * prime[j]] = 0;
				break;
			}
			mu[i * prime[j]] = -mu[i];
		}
	}
	for( int j = 1;j <= cnt;j ++ )
		for( int i = 1;i * prime[j] <= n;i ++ )
			sum[prime[j] * i] += mu[i];
	for( int i = 1;i < maxn;i ++ ) pre[i] = pre[i - 1] + sum[i];
}

int main() {
	init( 1e7 );
	scanf( "%d", &T );
	int n, m, r;
	long long ans;
	while( T -- ) {
		scanf( "%d %d", &n, &m );
		if( n > m ) swap( n, m );
		ans = 0;
		for( int i = 1;i <= n;i = r + 1 ) {
			r = min( n / ( n / i ), m / ( m / i ) );
			ans += 1ll * ( pre[r] - pre[i - 1] ) * ( n / i ) * ( m / i );
		}
		printf( "%lld\n", ans );
	}
	return 0;
}

[SDOI2014]数表

  • solution

一句话题意,令 s u m ( i ) sum(i) sum(i)表示 i i i的因子和,给定 n , m , a n,m,a n,m,a,求🍔
∑ 1 ≤ i ≤ n , 1 ≤ j ≤ m s u m ( g c d ( i , j ) ) ≤ a s u m ( g c d ( i , j ) ) \sum_{1\le i\le n,1\le j\le m}^{sum(gcd(i,j))\le a}sum(gcd(i,j)) 1in,1jmsum(gcd(i,j))asum(gcd(i,j))

先思考此题的弱化版,即不考虑 a a a
∑ i = 1 n ∑ j = 1 m s u m ( g c d ( i , j ) ) \sum_{i=1}^n\sum_{j=1}^msum(gcd(i,j)) i=1nj=1msum(gcd(i,j))
F ( i ) F(i) F(i)表示 1 ≤ x ≤ n , 1 ≤ y ≤ m , i ∣ g c d ( x , y ) 1\le x\le n, 1\le y\le m,i|gcd(x,y) 1xn,1ym,igcd(x,y)的数对个数
f ( i ) f(i) f(i)表示 1 ≤ x ≤ n , 1 ≤ y ≤ m , g c d ( x , y ) = i 1\le x\le n,1\le y\le m,gcd(x,y)=i 1xn,1ym,gcd(x,y)=i的数对个数
则有
F ( i ) = ∑ i ∣ d f ( d ) , F ( i ) = ⌊ n i ⌋ ⌊ m i ⌋ F(i)=\sum_{i|d}f(d),F(i)=\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{i}\rfloor F(i)=idf(d),F(i)=inim
莫比乌斯反演
f ( i ) = ∑ i ∣ d μ ( d i ) F ( d ) = ∑ i ∣ d μ ( d i ) ⌊ n d ⌋ ⌊ m d ⌋ f(i)=\sum_{i|d}\mu(\frac{d}{i})F(d)=\sum_{i|d}\mu(\frac{d}{i})\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor f(i)=idμ(id)F(d)=idμ(id)dndm
于是,有
a n s = ∑ i = 1 m i n ( n , m ) s u m ( i ) f ( i ) ans=\sum_{i=1}^{min(n,m)}sum(i)f(i) ans=i=1min(n,m)sum(i)f(i) = ∑ i = 1 m i n ( n , m ) s u m ( i ) ∑ i ∣ d μ ( d i ) ⌊ n d ⌋ ⌊ m d ⌋ =\sum_{i=1}^{min(n,m)}sum(i)\sum_{i|d}\mu(\frac{d}{i})\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor =i=1min(n,m)sum(i)idμ(id)dndm = ∑ d = 1 m i n ( n , m ) ⌊ n d ⌋ ⌊ m d ⌋ ∑ i ∣ d s u m ( i ) μ ( d i ) =\sum_{d=1}^{min(n,m)}\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor\sum_{i|d}sum(i)\mu(\frac{d}{i}) =d=1min(n,m)dndmidsum(i)μ(id)
如果现在知道 ∑ i ∣ d s u m ( i ) μ ( d i ) \sum_{i|d}sum(i)\mu(\frac{d}{i}) idsum(i)μ(id),就可以 O ( s q r t n ) O(sqrt{n}) O(sqrtn)的计算出答案
s u m ( i ) sum(i) sum(i)可以线性筛得到,与上一题类似,枚举 i i i暴力更新倍数,前缀和即可, O ( l o g n ) O(logn) O(logn)

现在加上限制 a a a,又怎么做呢??
其实只有 s u m ( i ) ≤ a sum(i)\le a sum(i)a i i i才会产生贡献
自然而然的想到,将 a , s u m ( i ) a,sum(i) a,sum(i)分别排序,树状数组维护
本质就是树状数组在线插入
在这里插入图片描述

至于取模的问题,采取自然溢出的方式即可,具体细节可参见代码

  • code
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
#define maxn 100000
#define int long long
struct node {
	int n, m, a, id;
}q[maxn], s[maxn];
int prime[maxn], mu[maxn + 5], sum[maxn + 5], tree[maxn + 5], result[maxn + 5];
bool vis[maxn + 5];
int cnt;

bool cmp( node x, node y ) {
	return x.a < y.a;
}

void init() {
	mu[1] = 1;
	for( int i = 2;i <= maxn;i ++ ) {
		if( ! vis[i] ) prime[++ cnt] = i, mu[i] = -1;
		for( int j = 1;j <= cnt && i * prime[j] <= maxn;j ++ ) {
			vis[i * prime[j]] = 1;
			if( i % prime[j] == 0 ) {
				mu[i * prime[j]] = 0;
				break;
			}
			mu[i * prime[j]] = -mu[i];
		}
	}
	for( int i = 1;i <= maxn;i ++ )
		for( int j = i;j <= maxn;j += i ) sum[j] += i;
	for( int i = 1;i <= maxn;i ++ )
		s[i].a = sum[i], s[i].id = i;
	sort( s + 1, s + maxn + 1, cmp );
}

int lowbit( int x ) {
	return x & ( -x );
}

void add( int x, int v ) {
	for( int i = x;i < maxn;i += lowbit( i ) )
		tree[i] += v;
}

int query( int x ) {
	int ans = 0;
	for( int i = x;i;i -= lowbit( i ) )
		ans += tree[i];
	return ans;
}

int solve( int n, int m ) {
	if( n > m ) swap( n, m );
	int ans = 0, r;
	for( int i = 1;i <= n;i = r + 1 ) {
		r = min( n / ( n / i ), m / ( m / i ) );
		ans += ( n / i ) * ( m / i ) * ( query( r ) - query( i - 1 ) );
	}
	return ans;
}

void Add( int id ) {
	for( int i = 1;i * id <= maxn;i ++ )
		add( i * id, mu[i] * sum[id] );
}

signed main() {
	int Q;
	scanf( "%lld", &Q );
	for( int i = 1;i <= Q;i ++ )
		scanf( "%lld %lld %lld", &q[i].n, &q[i].m, &q[i].a ), q[i].id = i;
	sort( q + 1, q + Q + 1, cmp );
	init();
	int now = 0;
	for( int i = 1;i <= Q;i ++ ) {
		while( s[now + 1].a <= q[i].a && now < maxn ) Add( s[++ now].id );
		result[q[i].id] = solve( q[i].n, q[i].m );
	}
	int mod = 1ll << 31;
	for( int i = 1;i <= Q;i ++ )
		printf( "%lld\n", result[i] % mod );
	return 0;
}

[国家集训队]Crash的数字表格/JZPTAB

  • solution
    一句话题意,求🍔 ∑ i = 1 n ∑ j = 1 m l c m ( i , j ) \sum_{i=1}^n\sum_{j=1}^mlcm(i,j) i=1nj=1mlcm(i,j)
  • s t e p 1 : step1: step1: 枚举最大公因数

= ∑ d = 1 m i n ( n , m ) ∑ i = 1 n ∑ j = 1 m i × j d =\sum_{d=1}^{min(n,m)}\sum_{i=1}^n\sum_{j=1}^m\frac{i\times j}{d} =d=1min(n,m)i=1nj=1mdi×j

  • s t e p 2 : step2: step2: 将最大公因数提到前面,循环上界压缩

= ∑ d = 1 m i n ( n , m ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i × d × j × d d = ∑ d = 1 m i n ( n , m ) d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ i × j            [ g c d ( i , j ) = 1 ] =\sum_{d=1}^{min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\frac{i\times d\times j\times d}{d}=\sum_{d=1}^{min(n,m)}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}i\times j\ \ \ \ \ \ \ \ \ \ [gcd(i,j)=1] =d=1min(n,m)i=1dnj=1dmdi×d×j×d=d=1min(n,m)di=1dnj=1dmi×j          [gcd(i,j)=1]

  • s t e p 3 : step3: step3: 利用 ∑ i ∣ n μ ( i ) = [ n = 1 ] \sum_{i|n}\mu(i)=[n=1] inμ(i)=[n=1],对原式不会造成改变

= ∑ d = 1 m i n ( n , m ) d ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ ∑ k ∣ g c d ( i , j ) μ ( k ) × i × j =\sum_{d=1}^{min(n,m)}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{k|gcd(i,j)}\mu(k)\times i\times j =d=1min(n,m)di=1dnj=1dmkgcd(i,j)μ(k)×i×j

  • s t e p 4 : step4: step4: 也将 μ \mu μ提到前面,那么为了保证 k ∣ i , k ∣ j k|i,k|j ki,kj,枚举 i , j i,j i,j变为直接枚举 k i , k j ki,kj ki,kj

= ∑ d = 1 m i n ( n , m ) d ∑ k m i n ( ⌊ n d ⌋ , ⌊ m d ⌋ ) ∑ k i ⌊ n d ⌋ ∑ k j ⌊ m d ⌋ μ ( k ) × k 2 × i × j =\sum_{d=1}^{min(n,m)}d\sum_{k}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\sum_{ki}^{\lfloor\frac{n}{d}\rfloor}\sum_{kj}^{\lfloor\frac{m}{d}\rfloor}\mu(k)\times k^2\times i\times j =d=1min(n,m)dkmin(dn,dm)kidnkjdmμ(k)×k2×i×j

  • s t e p 5 : step5: step5: k k k提出来

= ∑ d = 1 m i n ( n , m ) d ∑ k m i n ( ⌊ n d ⌋ , ⌊ m d ⌋ ) μ ( k ) × k 2 ∑ i = 1 ⌊ n d × k ⌋ ∑ j = 1 ⌊ m d × k ⌋ i × j =\sum_{d=1}^{min(n,m)}d\sum_{k}^{min(\lfloor\frac{n}{d}\rfloor, \lfloor\frac{m}{d}\rfloor)}\mu(k)\times k^2\sum_{i=1}^{\lfloor\frac{n}{d\times k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d\times k}\rfloor}i\times j =d=1min(n,m)dkmin(dn,dm)μ(k)×k2i=1d×knj=1d×kmi×j
在这里插入图片描述

⚡:
∑ k m i n ( ⌊ n d ⌋ , ⌊ m d ⌋ ) μ ( k ) × k 2 \sum_{k}^{min(\lfloor\frac{n}{d}\rfloor, \lfloor\frac{m}{d}\rfloor)}\mu(k)\times k^2 kmin(dn,dm)μ(k)×k2使用老套路前缀和优化,之后 O ( 1 ) O(1) O(1)查询
∑ i = 1 ⌊ n d × k ⌋ ∑ j = 1 ⌊ m d × k ⌋ i × j \sum_{i=1}^{\lfloor\frac{n}{d\times k}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d\times k}\rfloor}i\times j i=1d×knj=1d×kmi×j其实就是一个等差数列求积

∑ i = 1 n ∑ j = 1 m i × j = n × ( n + 1 ) 2 . m × ( m + 1 ) 2 \sum_{i=1}^n\sum_{j=1}^mi\times j=\frac{n\times (n+1)}{2}. \frac{m\times (m+1)}{2} i=1nj=1mi×j=2n×(n+1).2m×(m+1)

  • code
#include <cstdio>
#include <iostream>
using namespace std;
#define int long long
#define mod 20101009
#define maxn 10000005
int mu[maxn], prime[maxn], sum[maxn];
bool vis[maxn];
int cnt, inv;

void init() {
	mu[1] = 1;
	for( int i = 2;i < maxn;i ++ ) {
		if( ! vis[i] ) prime[++ cnt] = i, mu[i] = -1;
		for( int j = 1;j <= cnt && i * prime[j] < maxn;j ++ ) {
			vis[i * prime[j]] = 1;
			if( i % prime[j] == 0 ) {
				mu[i * prime[j]] = 0;
				break;
			}
			mu[i * prime[j]] = -mu[i];
		}
	}
	for( int i = 1;i < maxn;i ++ )
		sum[i] = ( sum[i - 1] + i % mod * i % mod * mu[i] % mod + mod ) % mod;
}

int seq( int n ) {
	return n % mod * ( n + 1 ) % mod * inv % mod;
}

int calc( int n, int m ) {
	if( n > m ) swap( n, m );
	int ans = 0, r;
	for( int i = 1;i <= n;i = r + 1 ) {
		r = min( n / ( n / i ), m / ( m / i ) );
		ans = ( ans + ( sum[r] - sum[i - 1] + mod ) % mod * seq( n / i ) % mod * seq( m / i ) % mod ) % mod;
	}
	return ans;
}

int qkpow( int x, int y ) {
	int ans = 1;
	while( y ) {
		if( y & 1 ) ans = ans * x % mod;
		x = x * x % mod;
		y >>= 1;
	}
	return ans;
}

signed main() {
	init();
	inv = qkpow( 2, mod - 2 );
	int n, m;
	scanf( "%lld %lld", &n, &m );
	int ans = 0;
	for( int d = 1;d <= min( n, m );d ++ )
		ans = ( ans + d * calc( n / d, m / d ) % mod ) % mod;
	printf( "%lld\n", ans );
	return 0;
} 

[SDOI2015]约数个数和

  • solution
    一句话题意,设 d ( x ) d(x) d(x)表示 x x x的约数和,求🍔

∑ i = 1 n ∑ j = 1 m d ( i × j ) \sum_{i=1}^n\sum_{j=1}^md(i\times j) i=1nj=1md(i×j)

首先有一个约数和的公式🍔 我不是很会证
在这里插入图片描述
d ( i × j ) = ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] d(i\times j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1] d(i×j)=xiyj[gcd(x,y)=1]

= ∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] =\sum_{i=1}^n\sum_{j=1}^m\sum_{x|i}\sum_{y|j}[gcd(x,y)=1] =i=1nj=1mxiyj[gcd(x,y)=1]
转换一下枚举方式,考虑直接枚举因子
= ∑ i = 1 n ∑ j = 1 m ⌊ n i ⌋ ⌊ m j ⌋    ( g c d ( i , j ) = 1 ) =\sum_{i=1}^n\sum_{j=1}^m\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor\ \ (gcd(i,j)=1) =i=1nj=1minjm  (gcd(i,j)=1)
F ( i ) F(i) F(i)表示 1 ≤ x ≤ n , 1 ≤ y ≤ m , i ∣ g c d ( x , y ) 1\le x\le n,1\le y\le m,i|gcd(x,y) 1xn,1ym,igcd(x,y)的约数和
f ( i ) f(i) f(i)表示 1 ≤ x ≤ n , 1 ≤ y ≤ m , i = g c d ( x , y ) 1\le x\le n,1\le y\le m,i=gcd(x,y) 1xn,1ym,i=gcd(x,y)的约数和, f ( 1 ) f(1) f(1)即为最终答案
F ( p ) = ∑ p ∣ d f ( d ) , F ( p ) = ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ m p ⌋ ⌊ n i ∗ p ⌋ ⌊ m j ∗ p ⌋ F(p)=\sum_{p|d}f(d),F(p)=\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}\lfloor\frac{n}{i*p}\rfloor\lfloor\frac{m}{j*p}\rfloor F(p)=pdf(d),F(p)=i=1pnj=1pmipnjpm
莫比乌斯反演
f ( p ) = ∑ p ∣ t μ ( t p ) F ( t ) = ∑ p ∣ t μ ( t p ) ∑ i = 1 ⌊ n t ⌋ ∑ j = 1 ⌊ m t ⌋ ⌊ n i ∗ t ⌋ ⌊ m j ∗ t ⌋ f(p)=\sum_{p|t}\mu(\frac{t}{p})F(t)=\sum_{p|t}\mu(\frac{t}{p})\sum_{i=1}^{\lfloor\frac{n}{t}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{t}\rfloor}\lfloor\frac{n}{i*t}\rfloor\lfloor\frac{m}{j*t}\rfloor f(p)=ptμ(pt)F(t)=ptμ(pt)i=1tnj=1tmitnjtm
最后想求的答案就是 f ( 1 ) f(1) f(1)
= ∑ t = 1 m i n ( n , m ) μ ( t ) F ( t ) , F ( t ) = ∑ i = 1 ⌊ n t ⌋ ∑ j = 1 ⌊ m t ⌋ ⌊ n i t ⌋ ⌊ m j t ⌋ =\sum_{t=1}^{min(n,m)}\mu(t)F(t),F(t)=\sum_{i=1}^{\lfloor\frac{n}{t}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{t}\rfloor}\lfloor\frac{n}{it}\rfloor\lfloor\frac{m}{jt}\rfloor =t=1min(n,m)μ(t)F(t),F(t)=i=1tnj=1tmitnjtm
在这里插入图片描述

对于求 F ( t ) F(t) F(t)的方法,先计算出 S ( t ) = ∑ i = 1 t ⌊ t i ⌋ S(t)=\sum_{i=1}^t\lfloor\frac{t}{i}\rfloor S(t)=i=1tit,则可以 O ( 1 ) O(1) O(1)得到

  • code
#include <cstdio>
#include <iostream>
using namespace std;
#define int long long
#define maxn 50005
int T, n, m, cnt;
int mu[maxn], prime[maxn], sum[maxn];
bool vis[maxn];

void init() {
	mu[1] = 1;
	for( int i = 2;i < maxn;i ++ ) {
		if( ! vis[i] ) prime[++ cnt] = i, mu[i] = -1;
		for( int j = 1;j <= cnt && i * prime[j] < maxn;j ++ ) {
			vis[i * prime[j]] = 1;
			if( i % prime[j] == 0 ) {
				mu[i * prime[j]] = 0;
				break;
			}
			mu[i * prime[j]] = -mu[i];
		}
	}
	for( int i = 1;i < maxn;i ++ ) mu[i] += mu[i - 1];
	for( int x = 1;x < maxn;x ++ ) {
		int ans = 0;
		for( int i = 1, j;i <= x;i = j + 1 ) {
			j = x / ( x / i );
			ans += ( j - i + 1 ) * ( x / i );
		}
		sum[x] = ans;
	}
}

int calc( int n, int m ) {
	if( n > m ) swap( n, m );
	int ans = 0, r;
	for( int i = 1;i <= n;i = r + 1 ) {
		r = min( n / ( n / i ), m / ( m / i ) );
		ans += ( mu[r] - mu[i - 1] ) * sum[n / i] * sum[m / i];
	}
	return ans;
}

signed main() {
	init();
	scanf( "%lld", &T );
	while( T -- ) {
		scanf( "%lld %lld", &n, &m );
		printf( "%lld\n", calc( n, m ) );
	}
	return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值