题目链接
题意:
给你一个n*m的矩阵,这个矩阵的每个数的取值是1或者是-1,问是否存在路径使得路径上的和为0,每个点只能往下走一格或者是往右走一格
分析:
首先这个路径的长度一定是n+m-1,所以说这个长度为奇数的话就一定无解,因为都是1或者是-1,当长度是偶数的时候,用mx[i][j]表示从(1,1)到(i,j)的路径的最大值,mi[i][j]表示从(1,1)到(i,j)的路径的最小值,然后如果0在mx[n][m]和mi[n][m]之间的话那就一定有解,因为mx[n][m]和mi[n][m]一定是偶数,然后路径可以通过变换来使得mx[n][m]和mi[n][m]来实时变化,而且变化的幅度为2,所以说只要是0在范围内就一定能等价变换得到,下面请看代码:
#include<bits/stdc++.h>
using namespace std;
const int N = 1010,inf = 1e7;
int g[N][N];
int mx[N][N],mi[N][N];
typedef pair<int,int> PII;
int main(){
int T;
cin>>T;
while(T--){
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&g[i][j]);
mx[i][j] = -1e7;
mi[i][j] = 1e7;
}
if((n+m-1)%2){
cout<<"NO"<<endl;
continue;
}
mx[1][1] = mi[1][1] = g[1][1];
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(i > 1){
mx[i][j] = max(mx[i][j],mx[i-1][j]+g[i][j]);
mi[i][j] = min(mi[i][j],mi[i-1][j]+g[i][j]);
}
if(j > 1){
mx[i][j] = max(mx[i][j],mx[i][j-1]+g[i][j]);
mi[i][j] = min(mi[i][j],mi[i][j-1]+g[i][j]);
}
}
}
if(mx[n][m] >= 0 && mi[n][m] <= 0) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
return 0;
}