差分约束就是满足这种大于号和小于号的不等式组的最大解或者是最小解,Xu-Xv <= W这个不等式相当于是 Xu <= Xv + W , 那么在图上就是V节点到U节点有一条长度为W的边,然后如果有多个u与v之间的限制要满足的话,那么那个最紧的限制就是最大解,因为比这个解小的话就符合题意,但是比这个解大的话就不符合题意了,那么题目中说的是要我们求最小解,那么我们就可以将边取反,然后那个点权也相当于取反,这样求的解越大也就越靠近0 ,那么就返回去后就越小,所以说只需要建立一个反向边就可以了,这里需要加一个零点来作为基准点,因为说这东西没有下限,如果有负环的话就是无解的,因为转一圈的话写上那些不等式然后一结合就把所有的变量给约掉了,负环的和一定是负的,就成了0 <= 负数,所以说要判一下负环,这里用的是bellman_ford。一般这种题数据量不会很大,下面请看代码
#include<bits/stdc++.h>
using namespace std;
const int N = 5010;
int h[N],e[N+N],ne[N+N],w[N+N],idx,n,m,dis[N];
void add(int a,int b,int c){
e[idx] = b;w[idx] = c;ne[idx] = h[a];h[a] = idx++;
}
struct node{
int u,v,w;
}E[N];
int main(){
scanf("%d%d",&n,&m);
h[0] = -1;
// for(int i=1;i<=n;i++) dis[i] = 1<<30,h[i] = -1;
for(int i=0;i<m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
E[i] = {v,u,w};
}
for(int i=1;i<=n;i++) add(i,0,0);
for(int i=0;i<=n;i++){
for(int j=0;j<m;j++){
dis[E[j].u] = min(dis[E[j].u],dis[E[j].v]+E[j].w);
}
}
for(int j=0;j<m;j++){
if(dis[E[j].u] > dis[E[j].v]+E[j].w){
puts("-1");
return 0;
}
}
for(int i=1;i<=n;i++) printf("%d ",dis[0]-dis[i]);
puts("");
return 0;
}