问题 B: 算法7-12:有向无环图的拓扑排序

时间限制: 1 Sec  内存限制: 32 MB
提交: 410  解决: 253
 

题目描述

由某个集合上的一个偏序得到该集合上的一个全序,这个操作被称为拓扑排序。偏序和全序的定义分别如下:
若集合X上的关系R是自反的、反对称的和传递的,则称R是集合X上的偏序关系。
设R是集合X上的偏序,如果对每个x,y∈X必有xRy或yRx,则称R是集合X上的全序关系。
由偏序定义得到拓扑有序的操作便是拓扑排序。
拓扑排序的流程如下:
1.       在有向图中选一个没有前驱的顶点并且输出之;
2.       从图中删除该顶点和所有以它为尾的弧。
重复上述两步,直至全部顶点均已输出,或者当前图中不存在无前驱的顶点为止。后一种情况则说明有向图中存在环。
采用邻接表存储有向图,并通过栈来暂存所有入度为零的顶点,可以描述拓扑排序的算法如下:

在本题中,读入一个有向图的邻接矩阵(即数组表示),建立有向图并按照以上描述中的算法判断此图是否有回路,如果没有回路则输出拓扑有序的顶点序列。

输入

输入的第一行包含一个正整数n,表示图中共有n个顶点。其中n不超过50。
以后的n行中每行有n个用空格隔开的整数0或1,对于第i行的第j个整数,如果为1,则表示第i个顶点有指向第j个顶点的有向边,0表示没有i指向j的有向边。当i和j相等的时候,保证对应的整数为0。

输出

如果读入的有向图含有回路,请输出“ERROR”,不包括引号。
如果读入的有向图不含有回路,请按照题目描述中的算法依次输出图的拓扑有序序列,每个整数后输出一个空格。
请注意行尾输出换行。

样例输入

4
0 1 0 0
0 0 1 0
0 0 0 0
0 0 1 0

样例输出

3 0 1 2 

提示

在本题中,需要严格的按照题目描述中的算法进行拓扑排序,并在排序的过程中将顶点依次储存下来,直到最终能够判定有向图中不包含回路之后,才能够进行输出。
 
另外,为了避免重复检测入度为零的顶点,可以通过一个栈结构维护当前处理过程中入度为零的顶点。

代码实现 

#include<iostream>
#include<stack>
#include <queue>
using namespace std;
#define ERROR -1
#define OK 1
#define MAX 51
int n;
queue<int> q;//用来存储拓扑序列
bool TopoloicalSort(int a[MAX][MAX]){
  stack<int>s;
  int* indegree=new int[n];
  for(int i=0;i<n;i++)
  indegree[i]=0;
  for(int i=0;i<n;i++){
    for(int j=0;j<n;j++){
      if(a[i][j]!=0){
        indegree[j]++;//求各顶点的入度情况
      }
    }
  }
  for(int i=0;i<n;i++){
    if(!indegree[i]){
      s.push(i);
    }
  }
 int count=0;//对输出进行计数
  while(!s.empty()){
  int v=s.top();
    s.pop();
  q.push(v);
    ++count;
    for(int i=0;i<n;i++){
      if(a[v][i]!=0){
        indegree[i]--;
        if(!indegree[i]){
          s.push(i);
        }
        }
    }
  }
  if(count==n)
    return true;
  else
    return false;
}
int main() {
  int a[MAX][MAX];
  cin>>n;
  for(int i=0;i<n;i++){
    for(int j=0;j<n;j++){
      cin>>a[i][j];
    }
  }
  bool b=TopoloicalSort(a);
  if(b){
  while(!q.empty()){
                cout<<q.front()<<" ";
                q.pop();
            }
        }else
            cout<<"ERROR"<<endl;
  return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值