【题目描述】
有一间长方形的房子,地上铺了红色、黑色两种颜色的正方形瓷砖。你站在其中一块黑色的瓷砖上,只能向相邻的黑色瓷砖移动。请写一个程序,计算你总共能够到达多少块黑色的瓷砖。
【输入】
包括多组数据。每组数据的第一行是两个整数W和H,分别表示x方向和y方向瓷砖的数量。W和H都不超过20。在接下来的H行中,每行包括W个字符。每个字符表示一块瓷砖的颜色,规则如下:
1)‘.’:黑色的瓷砖;
2)‘#’:白色的瓷砖;
3)‘@’:黑色的瓷砖,并且你站在这块瓷砖上。该字符在每组数据中唯一出现一次。
当在一行中读入的是两个零时,表示输入结束。
【输出】
对每组数据,分别输出一行,显示你从初始位置出发能到达的瓷砖数(记数时包括初始位置的瓷砖)。
【输入样例】
6 9
…#.
…#
…
…
…
…
…
#@…#
.#…#.
0 0
【输出样例】
45
分析
- 本来此题刚开始误解为1212:LETTERS这个类型题,但是最后发现此题不是统计某条路径的最大经过黑瓷砖块数,求的是所有路径经过黑瓷砖的总数。
- 回溯问题:在此题不回溯,不统计走过的黑瓷砖,也就是起到去重作用;上一题迷宫的不回溯也是同样道理,不去做重复的事;
- 多组测试数据:重置数据, 需要读题,刚开始那一块黑瓷砖也算数,所以ans=1,重置时候不要习惯性变成0了;
- 四个方向问题,利用偏移量数组;
#include <bits/stdc++.h>
using namespace std;
const int N = 25;
char path[N][N];
int vis[N][N];
int dx[]{-1, 0, 1, 0};
int dy[]{0, 1, 0, -1};
int w, h, ans = 1;
void dfs(int x, int y) {
//此题不是统计某条路径的最大经过黑瓷砖块数,求的是所有路径总数
//ans = max(ans, cnt);
for (int i = 0; i < 4; ++i) {
int newx = x + dx[i];
int newy = y + dy[i];
if (newx >= 0 && newy >= 0 && newx < h && newy < w && !vis[newx][newy] && path[newx][newy] == '.') {
vis[newx][newy] = 1;
ans++;
dfs(newx, newy);
//在此题不回溯,不统计走过的黑瓷砖,也就是起到去重作用
//vis[newx][newy] = 0;
}
}
}
int main() {
while (true) {
cin >> w >> h;
if (w == 0 && h == 0)
break;
//开始索引
int x, y;
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
char c;
cin >> c;
path[i][j] = c;
if (path[i][j] == '@') {
x = i;
y = j;
}
}
}
vis[x][y] = 1;
dfs(x, y);
cout << ans << endl;
//重置数据
memset(vis, 0, sizeof(vis));
ans = 1;
}
return 0;
}