【题目描述】
有N个鱼塘排成一排(N<100),每个鱼塘中有一定数量的鱼,例如:N=5时,如下表:
即:在第1个鱼塘中钓鱼第1分钟内可钓到10条鱼,第2分钟内只能钓到8条鱼,……,第5分钟以后再也钓不到鱼了。从第1个鱼塘到第2个鱼塘需要3分钟,从第2个鱼塘到第3个鱼塘需要5分钟,……
给出一个截止时间T(T<1000),设计一个钓鱼方案,从第1个鱼塘出发,希望能钓到最多的鱼。
假设能钓到鱼的数量仅和已钓鱼的次数有关,且每次钓鱼的时间都是整数分钟。
【输入】
共5行,分别表示:
第1行为N;
第2行为第1分钟各个鱼塘能钓到的鱼的数量,每个数据之间用一空格隔开;
第3行为每过1分钟各个鱼塘钓鱼数的减少量,每个数据之间用一空格隔开;
第4行为当前鱼塘到下一个相邻鱼塘需要的时间;
第5行为截止时间T。
【输出】
一个整数(不超过231−1),表示你的方案能钓到的最多的鱼。
【输入样例】
5
10 14 20 16 9
2 4 6 5 3
3 5 4 4
14
【输出样例】
76
分析
- 此题是一道贪心+堆的题目,枚举每个池塘(从第一个开始),然后减去到当前枚举到的池塘的走路的时间,然后看看他在0到i这i个池塘能钓多少鱼(每次都把0到i这些池塘的鱼放进堆里);然后while循环,知道时间t用完以及池塘还有鱼,看看cnt的值和最终答案的值,选择大的;
- 参考:第三部分 数据结构 – 第三章 树1373:鱼塘钓鱼(fishing),需注意 while (q.top().first && t)这样写是不行的,因为t可能会直接变为负数,然后还在循环内,也就是while循环只在等于0的条件下退出循环,正负数在里面都是死循环;
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> P;
const int N = 105;
priority_queue<P> q;
int a[N], b[N], c[N];
int n, T, ans, walk;
int main() {
cin.tie(0);
cin >> n;
for (int i = 0; i < n; ++i)
cin >> a[i];
for (int i = 0; i < n; ++i)
cin >> b[i];
for (int i = 0; i < n - 1; ++i)
cin >> c[i];
cin >> T;
//枚举每个池塘(从第一个开始)
for (int i = 0; i < n; ++i) {
//while (!q.empty())q.pop();
int t = T - walk;//减去走路的时间
//从第一个池塘开始,到当前所枚举到的池塘
for (int j = 0; j <= i; ++j)
q.push(make_pair(a[j], j));
int cnt = 0;
while (q.top().first > 0 && t > 0) {
//时间没用完+当前池塘还不空
P temp = q.top();
q.pop();
cnt += temp.first;
//q.top().first-=b[i];不能直接修改,所以用一个temp修改
temp.first -= b[temp.second];
q.push(temp);
t--;
}
walk += c[i];
ans = max(ans, cnt);
}
cout << ans;
return 0;
}