[NOIP2001 提高组] 一元三次方程求解
题目描述
有形如: a x 3 + b x 2 + c x + d = 0 a x^3 + b x^2 + c x + d = 0 ax3+bx2+cx+d=0 这样的一个一元三次方程。给出该方程中各项的系数( a , b , c , d a,b,c,d a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在 − 100 -100 −100 至 100 100 100 之间),且根与根之差的绝对值 ≥ 1 \ge 1 ≥1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后 2 2 2 位。
提示:记方程 f ( x ) = 0 f(x) = 0 f(x)=0,若存在 2 2 2 个数 x 1 x_1 x1 和 x 2 x_2 x2,且 x 1 < x 2 x_1 < x_2 x1<x2, f ( x 1 ) × f ( x 2 ) < 0 f(x_1) \times f(x_2) < 0 f(x1)×f(x2)<0,则在 ( x 1 , x 2 ) (x_1, x_2) (x1,x2) 之间一定有一个根。
输入格式
一行, 4 4 4 个实数 a , b , c , d a, b, c, d a,b,c,d。
输出格式
一行, 3 3 3 个实根,从小到大输出,并精确到小数点后 2 2 2 位。
样例 #1
样例输入 #1
1 -5 -4 20
样例输出 #1
-2.00 2.00 5.00
提示
【题目来源】
NOIP 2001 提高组第一题
分析
解法一:暴力
由于数据范围比较小,每个1从0.001开找,那么总时间复杂度:O(200*1000),小于10^6可以直接过;
#include<bits/stdc++.h>
using namespace std;
double a, b, c, d;
int main() {
scanf("%lf%lf%lf%lf", &a, &b, &c, &d); // 输入
for (double i = -100; i <= 100; i += 0.001) {//枚举每个答案
if (fabs(i * i * i * a + i * i * b + i * c + d) < 0.001)//避免double精度错误
printf("%.02lf ", i);//两位小数输出
}
return 0;
}
解法二:二分
- 首先我们要明白一个函数连续性的性质,当 f(a)f(b)<0时,说明区间[a,b]之间必有一个根(画个图就知道了),所以我们可以枚举每段长度为1 的区间,进行区间二分;
- 浮点数的二分继续进行的条件就是 right-left>=1e-5即可,不能直接 right<=left,因为浮点数无法直接进行比较大小;1e-5基本满足了精确到小数点后4位以下的题了;当然此题也可以>=0.001即可;
#include<bits/stdc++.h>
using namespace std;
double a, b, c, d;
//计算函数值
double f(double x) {
return a * x * x * x + b * x * x + c * x + d;
}
int main() {
cin >> a >> b >> c >> d;
for (double i = -100; i <= 99; i++) {
//要特判端点值
if (f(i) == 0)
printf("%.2lf ", i);
else if (f(i) * f(i + 1) < 0) {
//这个区间有根,进行二分找根x
double l = i, r = i + 1, mid;
while (r - l >= 0.001) {//精确到两位
mid = l + (r - l) / 2;
if (f(l) * f(mid) <= 0) {
//根在区间左半边
r = mid;
} else {
l = mid;
}
}
printf("%.2lf ", r);
}
}
return 0;
}