田忌赛马
题目描述
我国历史上有个著名的故事: 那是在2300年以前。齐国的大将军田忌喜欢赛马。他经常和齐王赛马。他和齐王都有三匹马:常规马,上级马,超级马。一共赛三局,每局的胜者可以从负者这里取得200银币。每匹马只能用一次。齐王的马好,同等级的马,齐王的总是比田忌的要好一点。于是每次和齐王赛马,田忌总会输600银币。
田忌很沮丧,直到他遇到了著名的军师――孙膑。田忌采用了孙膑的计策之后,三场比赛下来,轻松而优雅地赢了齐王200银币。这实在是个很简单的计策。由于齐王总是先出最好的马,再出次好的,所以田忌用常规马对齐王的超级马,用自己的超级马对齐王的上级马,用自己的上级马对齐王的常规马,以两胜一负的战绩赢得200银币。实在很简单。
如果不止三匹马怎么办?这个问题很显然可以转化成一个二分图最佳匹配的问题。把田忌的马放左边,把齐王的马放右边。田忌的马A和齐王的B之间,如果田忌的马胜,则连一条权为200的边;如果平局,则连一条权为0的边;如果输,则连一条权为-200的边……如果你不会求最佳匹配,用最小费用最大流也可以啊。 然而,赛马问题是一种特殊的二分图最佳匹配的问题,上面的算法过于先进了,简直是杀鸡用牛刀。现在,就请你设计一个简单的算法解决这个问题。
输入格式
第一行一个整数n,表示他们各有几匹马(两人拥有的马的数目相同)。第二行n个整数,每个整数都代表田忌的某匹马的速度值(0 <= 速度值<= 100)。第三行n个整数,描述齐王的马的速度值。两马相遇,根据速度值的大小就可以知道哪匹马会胜出。如果速度值相同,则和局,谁也不拿钱。
【数据规模】
对于20%的数据,1<=N<=65;
对于40%的数据,1<=N<=250;
对于100%的数据,1<=N<=2000。
输出格式
仅一行,一个整数,表示田忌最大能得到多少银币。
样例 #1
样例输入 #1
3
92 83 71
95 87 74
样例输出 #1
200
分析
此题的贪心策略就是:
- ①如果田忌最快的马,能打过齐王最快的马,那就让他们打;
- ②田忌最快的马,不如齐王最快的马,那就用田忌最慢的马去和齐王最快的马去打,以弱换强(王者里面用自己辅助换掉对面射手);
- ③田、齐最快的马速度一样,那就比第一匹马,然后分以下三种情况:
(1)a[lefta] > b[leftb],那田直接赢
(2)a[lefta] == b[leftb],说明平局,那就用田忌第一只马和齐王最后一只马比较,换掉齐王最快的马,(有可能只剩一个马,b[leftb]=b[rightb],所以还会是平局,就不用减200,否则的话,输给齐王最快的一只马,减200;)
(3)a[lefta]<b[leftb],反正都是输,把齐王最好的马带走
#include<bits/stdc++.h>
using namespace std;
int n, ans;
int a[2010];//田
int b[2010];//齐
int main() {
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> a[i];
}
for (int i = 1; i <= n; ++i) {
cin >> b[i];
}
sort(a + 1, a + 1 + n);
sort(b + 1, b + 1 + n);
//两个数组的首尾指针
int lefta = 1, leftb = 1;
int righta = n, rightb = n;
while (lefta <= righta) {//leftb<=rightb也一样
//1.田最快的马能打过齐最快的马
if (a[righta] > b[rightb]) {
ans += 200;
righta--;
rightb--;
} else if (a[righta] < b[rightb]) {//2. 田最快的马不如齐最快的马,那就用田最慢的马去和齐最快的马去打
ans -= 200;
lefta++;
rightb--;
} else {//3. 田、齐最快的马速度一样,那就比第一匹马
if (a[lefta] > b[leftb]) {//3.1 赢
ans += 200;
lefta++;
leftb++;
} else if (a[lefta] == b[leftb]) {//3.2 第一个马平局,与齐王最后一个马比较
//有可能只剩一个马,b[leftb]=b[rightb],所以还会是平局,就不用减200
if (a[lefta] < b[rightb])
ans -= 200;
lefta++;
rightb--;
} else {//3.3 a[lefta]<b[leftb],反正都是输,把齐王最好的马带走
ans -= 200;
lefta++;
rightb--;
}
}
}
cout << ans;
return 0;
}