目录
二、精确率(precision),召回率(Recall)与特异性(specificity):
一、TP, FP, TN, FN:
- True Positives,TP:预测为正样本,实际也为正样本的特征数
- False Positives,FP:预测为正样本,实际为负样本的特征数
- True Negatives,TN:预测为负样本,实际也为负样本的特征数
- False Negatives,FN:预测为负样本,实际为正样本的特征数
听起来还是很费劲,不过我们用一张图就很容易理解了。图如下所示,里面绿色的半圆就是TP(True Positives), 红色的半圆就是FP(False Positives), 左边的灰色长方形(不包括绿色半圆),就是FN(False Negatives)。右边的 浅灰色长方形(不包括红色半圆),就是TN(True Negatives)。这个绿色和红色组成的圆内代表我们分类得到模型结果认为是正值的样本。
二、精确率(precision),召回率(Recall)与特异性(specificity):
三、RoC曲线和PR曲线:
有了上面精确率, 召回率和特异性的基础,理解RoC曲线和PR曲线就小菜一碟了。
以TPR为y轴,以FPR为x轴,我们就直接得到了RoC曲线。从FPR和TPR的定义可以理解,TPR越高,FPR越小,我们的模型和算法就越高效。也就是画出来的RoC曲线越靠近左上越好。如下图左图所示。从几何的角度讲,RoC曲线下方的面积越大越大,则模型越优。所以有时候我们用RoC曲线下的面积,即AUC(Area Under Curve)值来作为算法和模型好坏的标准。
以精确率为y轴,以召回率为x轴,我们就得到了PR曲线。仍然从精确率和召回率的定义可以理解,精确率越高,召回率越高,我们的模型和算法就越高效。也就是画出来的PR曲线越靠近右上越好。如上图右图所示。
使用RoC曲线和PR曲线,我们就能很方便的评估我们的模型的分类能力的优劣了。
精确率与召回率,RoC曲线与PR曲线 - 刘建平Pinard - 博客园 (cnblogs.com)https://www.cnblogs.com/pinard/p/5993450.html