- (1)plt.plot(x,data, linewidth=2,color='#D7BB13',label='Pass-through',marker='D')
- D为菱形,o为圆形,^为三角形
- (2)pd.concat的运用:
- a = [1, 2, 3]
- b = [1, 2]
- c = [1, 2, 3, 4]
- #axis=1是指按照列合并,不同行数的dataframe也可以合并在一起,缺失值自动用nan补齐
- pd.concat([pd.DataFrame({'a': a}), pd.DataFrame({'b':b}), pd.DataFrame({'c':c})], axis=1)
- data = data.fillna('') #该命令是将缺失值nan转换为‘’
- #axis=1是指按行合并
- data=pd.concat([pd.DataFrame({'a': a}), pd.DataFrame({'b':b}), pd.DataFrame({'c':c})], axis=0)
- (3)for index, row in df.iterrows():
- #row代表每行的数据,数据格式为series,index是每行的索引
- row可以用row[0]读取第一行的值,也可以根据row['index的名称']来读取某一行的值
- (4)重置index
- 下面这段代码最好重置一下index,否则在按照列concat(axis=1)时可能会受index不连续或者不一样影响,导致concat后行数比预想的多很多:
- 用.reset_index()重置DataFrame的index:
- 如果想保留原有index,即原有index变成新的一列,跟在重置的从0开始的index后面,即用.reset_index()即可
- 若不想保留原有的index,则用.reset_index(drop=True),此时就直接更新index,从0开始,一直连续
- 用.reset_index()重置DataFrame的index:
- 下面这段代码最好重置一下index,否则在按照列concat(axis=1)时可能会受index不连续或者不一样影响,导致concat后行数比预想的多很多:
- (5)筛选DataFrame的某一列,并转换成列表,可以用.tolist()
- (6)DataFrame数据格式如果用df['name of one column'],则得到的是object数据格式。
- DataFrame数据格式如果用df[['name1 of one column','name2 of one column']],得到的才是dataframe数据格式
- (7)list(df),其中df是dataframe数据格式,则可以得到df的所有列名组成的列表
- (8)DataFrame数据格式可以用group根据某一列进行分块:
- 在上面循环中,根据Unit groupby,则name1输出的是每一个Unit的名字,gp1输出的是对应Unit为name1时对应的矩阵块,数据格式为dataframe格式。
- groupby和pd.concat([df1,df2],axis=0)或者pd.concat([df1,df2],axis=1)结合起来用非常好用。
Python代码记录
于 2024-05-07 17:23:06 首次发布