Python代码记录

  • (1)plt.plot(x,data, linewidth=2,color='#D7BB13',label='Pass-through',marker='D')
    • D为菱形,o为圆形,^为三角形
  • (2)pd.concat的运用:
    • a = [1, 2, 3]
    • b = [1, 2]
    • c = [1, 2, 3, 4]
    • #axis=1是指按照列合并,不同行数的dataframe也可以合并在一起,缺失值自动用nan补齐
    • pd.concat([pd.DataFrame({'a': a}), pd.DataFrame({'b':b}), pd.DataFrame({'c':c})], axis=1)

    • data = data.fillna('') #该命令是将缺失值nan转换为‘’
    • #axis=1是指按行合并
    • data=pd.concat([pd.DataFrame({'a': a}), pd.DataFrame({'b':b}), pd.DataFrame({'c':c})], axis=0)

  • (3)for index, row in df.iterrows():
    • #row代表每行的数据,数据格式为series,index是每行的索引
    • row可以用row[0]读取第一行的值,也可以根据row['index的名称']来读取某一行的值
  • (4)重置index
    • 下面这段代码最好重置一下index,否则在按照列concat(axis=1)时可能会受index不连续或者不一样影响,导致concat后行数比预想的多很多:

      • 用.reset_index()重置DataFrame的index:
        • 如果想保留原有index,即原有index变成新的一列,跟在重置的从0开始的index后面,即用.reset_index()即可
        • 若不想保留原有的index,则用.reset_index(drop=True),此时就直接更新index,从0开始,一直连续
  • (5)筛选DataFrame的某一列,并转换成列表,可以用.tolist()

  • (6)DataFrame数据格式如果用df['name of one column'],则得到的是object数据格式。
    • DataFrame数据格式如果用df[['name1 of one column','name2 of one column']],得到的才是dataframe数据格式
  • (7)list(df),其中df是dataframe数据格式,则可以得到df的所有列名组成的列表
  • (8)DataFrame数据格式可以用group根据某一列进行分块:

    • 在上面循环中,根据Unit groupby,则name1输出的是每一个Unit的名字,gp1输出的是对应Unit为name1时对应的矩阵块,数据格式为dataframe格式。
    • groupby和pd.concat([df1,df2],axis=0)或者pd.concat([df1,df2],axis=1)结合起来用非常好用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值