【动态规划-矩阵】6.最大正方形

题目

难度: 中等
题目内容:
在一个由 ‘0’ 和 ‘1’ 组成的二维矩阵内,找到只包含 ‘1’ 的最大正方形,并返回其面积。
示例1:
在这里插入图片描述
输入:matrix = [[“1”,“0”,“1”,“0”,“0”],[“1”,“0”,“1”,“1”,“1”],[“1”,“1”,“1”,“1”,“1”],[“1”,“0”,“0”,“1”,“0”]]
输出:4

示例2:
在这里插入图片描述
输入:matrix = [[“0”,“1”],[“1”,“0”]]
输出:1

前置思路

拿到题最直觉的思路就是遍历当遇到‘1’则进行展开获取以该点为顶点的,向右,向下展开后的最大边长,并将最大边长保存下来,最后返回最大边长的乘积。但这个 思路有个很明显的问题就是会存在很多重复计算的过程。
如果将这个过程用动态规划的思路简化是关键。
首先以2*2的正方形,找到最大边长的过程进行描述:
1.找到某个顶点,该顶点处于左上角,当前正方形最大边长就是1
2.此时只需要找与该点相邻的右点,下点,以及右下点,确认他们是否都是1即可
3.相对的,右下点的相邻上点,左点,以及左上点也都是1

可以推测,找到最大正方形的关键是正方形的对角线,且对角线的每个点都可以通过左上点的最大正方形边长+1来更新最大边长,前提是新的两条边都能填满。

那么先做一个假设,假设每一点都能记录下到该点(该点向左上延伸)的最大正方形边长,当且仅当某一点的左,上,左上能组成的最大正方形边长相等,才能使得最大正方形的边长+1。

进一步简化这个思路,某一个点所能组成的最大正方形边长(该点向左上延伸),(为相邻三点所能组成最大正方形边长的最小值)+1,因为更大值可以向下兼容,抽出某些部分结合新的点组成新的正方形。

代码

class Solution:
    def maximalSquare(self, matrix: List[List[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值