算法简介:
辗转相除法是用来求两个正整数最大公约数的算法。古希腊数学家欧几里得在其著作《The Elements》中最早描述了这种算法,所以被命名为欧几里得算法。
假如需要求 1997 和 615 两个正整数的最大公约数,用欧几里得算法,是这样进行的:
1997 ÷ 615 = 3 (余 152)
615 ÷ 152 = 4(余7)
152 ÷ 7 = 21(余5)
7 ÷ 5 = 1 (余2)
5 ÷ 2 = 2 (余1)
2 ÷ 1 = 2 (余0)
至此,最大公约数为1
以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。
代码实现:
#include"stdio.h"
int main()
{
int m = 0;
int n = 0;
int t = 0;
scanf_s("%d%d", &m, &n);//拿到要求的两个数
while (m % n)//当m%n=0时,循环结束,此时n便为最大公约数
{
t = m % n;
m = n;//原除数作被除数
n = t;//原结果做除数
}
printf("最大公约数为:%d", n);
return 0;
}
坚持打卡!!!