# -*- coding: utf-8 -*-
"""
Created on Sun Apr 17 21:57:27 2022
@author: ASUS
"""
import cv2
import numpy as np
from matplotlib import pyplot as plt
# read image
img = cv2.imread('F:\\110\\gm2.jpg')#图片的存储位置不要有中文
GrayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret,thresh2=cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY_INV)
img = np.array(thresh2)
# ret, thresh = cv2.threshold(img, 230, cv2.THRESH_BINARY)
height, width = img.shape
print ("height and width : ", height, width)
print ("height: ", height)
print ("width: ", width)
c=0 #在这里加参数才可以进入循环
d=0
e=0
for row in range(height):
a=0
b=0
for col in range(width):
val=img[row][col]
###################
# if val !=255:
# print(val)
##############
if(val)==0:
a=a+1
else:
照片法求郁闭度
最新推荐文章于 2022-06-30 18:18:32 发布
该博客介绍了一个Python程序,通过读取图像并将其转换为灰度,然后进行二值化处理来计算照片中的郁闭度。程序遍历图像的每个像素,统计黑色和白色像素的数量,进而计算出郁闭度比例。最后,使用matplotlib展示二值化后的图像。
摘要由CSDN通过智能技术生成