CSP-J2021题

目录

CSP-J2021-1分糖果

CSP-J2021-2插入排序

CSP-J2021-3网络连接

CSP-J2021-4小熊的果篮


CSP-J2021-1分糖果

 总时间限制: 

10000ms

单个测试点时间限制: 

1000ms

内存限制: 

524288kB

描述

红太阳幼儿园的小朋友们开始分糖果啦!

红太阳幼儿园有 n 个小朋友,你是其中之一。保证 n≥2。

有一天你在幼儿园的后花园里发现无穷多颗糖果,你打算拿一些糖果回去分给幼儿园的小朋友们。

由于你只是个平平无奇的幼儿园小朋友,所以你的体力有限,至多只能拿 R 块糖回去。

但是拿的太少不够分的,所以你至少要拿 L 块糖回去。保证 n≤L≤R。

也就是说,如果你拿了 k 块糖,那么你需要保证 L≤k≤R。

如果你拿了 k 块糖,你将把这 k 块糖放到篮子里,并要求大家按照如下方案分糖果:只要篮子里有不少于 n 块糖果,幼儿园的所有 n 个小朋友(包括你自己)都从篮子中拿走恰好一块糖,直到篮子里的糖数量少于 n 块。此时篮子里剩余的糖果均归你所有——这些糖果是作为你搬糖果的奖励

作为幼儿园高质量小朋友,你希望让作为你搬糖果的奖励的糖果数量(而不是你最后获得的总糖果数量!)尽可能多;因此你需要写一个程序,依次输入 n, L, R,并输出你最多能获得多少作为你搬糖果的奖励的糖果数量。

输入

输入一行,包含三个正整数 n, L, R,分别表示小朋友的个数、糖果数量的下界和上界。

输出

输出一行一个整数,表示你最多能获得的作为你搬糖果的奖励的糖果数量。

样例输入

样例输入1
7 16 23

样例输入2
10 14 18

样例输入3
233 4567 4657

样例输出

样例输出1
6

样例输出2
8

样例输出3
230

提示

【样例解释 #1】
拿 k=20 块糖放入篮子里。
篮子里现在糖果数 20≥n=7,因此所有小朋友获得一块糖;
篮子里现在糖果数变成 13≥n=7,因此所有小朋友获得一块糖;
篮子里现在糖果数变成 6容易发现,你获得的作为你搬糖果的奖励的糖果数量不可能超过 6 块(不然,篮子里的糖果数量最后仍然不少于 n,需要继续每个小朋友拿一块),因此答案是 6。

【样例解释 #2】
容易发现,当你拿的糖数量 k 满足 14=L≤k≤R=18 时,所有小朋友获得一块糖后,剩下的 k−10 块糖总是作为你搬糖果的奖励的糖果数量,因此拿 k=18 块是最优解,答案是 8。

【数据范围】


对于所有数据,保证 2≤n≤L≤R≤109。共 14 组测试数据,其中 10 组官方数据、4 组张老师和杜老师编程课添加数据。

#include<bits/stdc++.h>
using namespace std;
int main(){
	int n,l,r;
	cin>>n>>l>>r;
	int k,a=0;
	if(r/n>l/n)a=n-1;
	else a=r%n;
	cout<<a;
	return 0;
} 

思路:/*根据余数相关性质,0<(mod n)<n-1,也就是将糖果分给n个小朋友,余数的最大值为n -1。但是从L到R一定能取得最大值
- 1吗,不一定!分两种情况:
10
如果工和R不在一个周期内,那么从工到R中一定存在(mod n)最大值n-1。例如当n=7,L=16.R= 23,L和R不在同一周
期内,此时区间[16,23]中存在20%7 = 6。
如果工和R在一个周期内,那么工到R中(mod n)最大值为R%n,即区间工,R|中最大值R%n的结果。例如n = 10,L=
14,R = 18,工和R在同一周期中,此时区间|14,18]中(mod 10)的最大值为18%10 = 8
*/

CSP-J2021-2插入排序

总时间限制: 

25000ms

单个测试点时间限制: 

1000ms

内存限制: 

524288kB

描述

插入排序是一种非常常见且简单的排序算法。小 Z 是一名大一的新生,今天 H 老师刚刚在上课的时候讲了插入排序算法。

假设比较两个元素的时间为 O(1),则插入排序可以以 O(n2) 的时间复杂度完成长度为 n 的数组的排序。不妨假设这 n 个数字分别存储在 a1, a2, ..., an 之中,则如下伪代码给出了插入排序算法的一种最简单的实现方式:

这下面是 C/C++ 的示范代码:

for (int i = 1; i <= n; i++)
   for (int j = i; j >= 2; j--)
     if (a[j] < a[j-1]) {
        int t = a[j-1];
        a[j-1] = a[j];
        a[j] = t;
     }

这下面是 Pascal 的示范代码:

for i:=1 to n do
   for j:=i downto 2 do
      if a[j]<a[j-1] then
      begin
         t:=a[i];
         a[i]:=a[j];
         a[j]:=t;
      end;

为了帮助小 Z 更好的理解插入排序,小 Z 的老师 H 老师留下了这么一道家庭作业:

H 老师给了一个长度为 n 的数组 a,数组下标从 1 开始,并且数组中的所有元素均为非负整数。小 Z 需要支持在数组 a 上的 Q 次操作,操作共两种,参数分别如下:

  1. 1 x v:这是第一种操作,会将 a 的第 x 个元素,也就是 ax 的值,修改为 v。保证 1≤x≤n,1≤v≤109。注意这种操作会改变数组的元素,修改得到的数组会被保留,也会影响后续的操作
  2. 2 x:这是第二种操作,假设 H 老师按照上面的伪代码对 a 数组进行排序,你需要告诉 H 老师原来 a 的第 x 个元素,也就是 ax,在排序后的新数组所处的位置。保证 1≤x≤n。注意这种操作不会改变数组的元素,排序后的数组不会被保留,也不会影响后续的操作

H 老师不喜欢过多的修改,所以他保证类型 1 的操作次数不超过 5000。

小 Z 没有学过计算机竞赛,因此小 Z 并不会做这道题。他找到了你来帮助他解决这个问题。

输入

第一行,包含两个正整数 n, Q,表示数组长度和操作次数。
第二行,包含 n 个空格分隔的非负整数,其中第 i 个非负整数表示 ai。
接下来 Q 行,每行 2 个或 3 个正整数,表示一次操作,操作格式见【题目描述】。

输出

对于每一次类型为 2 的询问,输出一行一个正整数表示答案。

样例输入

3 4
3 2 1
2 3
1 3 2
2 2
2 3

样例输出

1
1
2

提示

【样例解释 #1】
在修改操作之前,假设 H 老师进行了一次插入排序,则原序列的三个元素在排序结束后所处的位置分别是 3,2,1。
在修改操作之后,假设 H 老师进行了一次插入排序,则原序列的三个元素在排序结束后所处的位置分别是 3,1,2。
注意虽然此时 a2=a3,但是我们不能将其视为相同的元素。

【样例 #2】
见附件中的 sort2.in 与 sort2.ans。
该测试点数据范围同测试点 1∼2。

【样例 #3】
见附件中的 sort3.in 与 sort3.ans。
该测试点数据范围同测试点 3∼7。

【样例 #4】
见附件中的 sort4.in 与 sort4.ans。
该测试点数据范围同测试点 12∼14。

【数据范围】
对于所有测试数据,满足 1≤n≤8000,1≤Q≤2×105,1≤x≤n,1≤v,ai≤109。
对于所有测试数据,保证在所有 Q 次操作中,至多有 5000 次操作属于类型一。

各测试点附加限制及分值如下表所示。

#include<bits/stdc++.h>
using namespace std;
int b[8005];
struct node{
	int a;//数值 
	int  w;//原位置 
}a[8005]; 
int main(){
	int n,q;
	cin>>n>>q;
	for(int i=1;i<=n;i++){
		cin>>a[i].a;
		a[i].w=i;
	}
	for(int i=1;i<=n;i++){
		for(int j=i;j>=2;j--){
			if(a[j].a<a[j-1].a)swap(a[j],a[j-1]);
			else break;
		}
	}
	for(int i=1;i<=n;i++){
		b[a[i].w]=i;
	}
	for(int i=1;i<=q;i++){
		int t;
		cin>>t;
		if(t==1){
			int x,v;
			cin>>x>>v;
			a[b[x]].a=v;
			for(int k=2;k<=n;k++){
				for(int j=k;j>=2;j--){
					if(a[j].a<a[j-1].a||a[j].a==a[j-1].a&&a[j].w<a[j-1].w){
						swap(a[j],a[j-1]);
						swap(b[a[j].w],b[a[j-1].w]);
					}else break;
				}
			}
		}
		else{
			int x;
			cin>>x;
			cout<<b[x]<<endl;
		}
	}
	return 0;
} 

对于案例一:

/*
3 4
3 2 1
1  3 3
2  2 2
3  1 1
2 3
1
1 3 2
2  2 3
2  3 1
3  1 2
2 2
1
2 3

原来第二个元素的位置 是1
原来 第三个元素的位置是 2
原来第一个元素的位置是3*/

CSP-J2021-3网络连接

总时间限制: 

20000ms

单个测试点时间限制: 

1000ms

内存限制: 

524288kB

描述

TCP/IP 协议是网络通信领域的一项重要协议。今天你的任务,就是尝试利用这个协议,还原一个简化后的网络连接场景。

在本问题中,计算机分为两大类:服务机(Server)和客户机(Client)。服务机负责建立连接,客户机负责加入连接。

需要进行网络连接的计算机共有 n 台,编号为 1 ∼ n,这些机器将按编号递增的顺序,依次发起一条建立连接或加入连接的操作。

每台机器在尝试建立或加入连接时需要提供一个地址串。服务机提供的地址串表示它尝试建立连接的地址,客户机提供的地址串表示它尝试加入连接的地址。

一个符合规范的地址串应当具有以下特征:

  1. 必须形如 a.b.c.d:e 的格式,其中 a,b,c,d,e 均为非负整数;
  2. 0≤a,b,c,d≤255,0≤e≤65535;
  3. a,b,c,d,e 均不能含有多余的前导 0。

相应地,不符合规范的地址串可能具有以下特征:

  1. 不是形如 a.b.c.d:e 格式的字符串,例如含有多于 3 个字符 . 或多于 1 个字符 : 等情况;
  2. 整数 a,b,c,d,e 中某一个或多个超出上述范围;
  3. 整数 a,b,c,d,e 中某一个或多个含有多余的前导 0。

例如,地址串 192.168.0.255:80 是符合规范的,但 192.168.0.999:80、192.168.00.1:10、192.168.0.1:088、192:168:0:1.233 均是不符合规范的。

如果服务机或客户机在发起操作时提供的地址串不符合规范,这条操作将被直接忽略。

在本问题中,我们假定凡是符合上述规范的地址串均可参与正常的连接,你无需考虑每个地址串的实际意义。

由于网络阻塞等原因,不允许两台服务机使用相同的地址串,如果此类现象发生,后一台尝试建立连接的服务机将会无法成功建立连接;除此之外,凡是提供符合规范的地址串的服务机均可成功建立连接。

如果某台提供符合规范的地址的客户机在尝试加入连接时,与先前某台已经成功建立连接的服务机提供的地址串相同,这台客户机就可以成功加入连接,并称其连接到这台服务机;如果找不到这样的服务机,则认为这台客户机无法成功加入连接。

请注意,尽管不允许两台不同的服务机使用相同的地址串,但多台客户机使用同样的地址串,以及同一台服务机同时被多台客户机连接的情况是被允许的。

你的任务很简单:在给出每台计算机的类型以及地址串之后,判断这台计算机的连接情况。

输入

第一行,一个正整数 n。
接下来 n 行,每行两个字符串 op, ad,按照编号从小到大给出每台计算机的类型及地址串。
其中 op 保证为字符串 Server 或 Client 之一,ad 为一个长度不超过 25 的,仅由数字、字符 . 和字符 : 组成的非空字符串。
每行的两个字符串之间用恰好一个空格分隔开,每行的末尾没有多余的空格。

输出

输出共 n 行,每行一个正整数或字符串表示第 i 台计算机的连接状态。其中:

如果第 i 台计算机为服务机,则:
1. 如果其提供符合规范的地址串且成功建立连接,输出字符串 OK。
2. 如果其提供符合规范的地址串,但由于先前有相同地址串的服务机而无法成功建立连接,输出字符串 FAIL。
3. 如果其提供的地址串不是符合规范的地址串,输出字符串 ERR。

如果第 i 台计算机为客户机,则:
1. 如果其提供符合规范的地址串且成功加入连接,输出一个正整数表示这台客户机连接到的服务机的编号。
2. 如果其提供符合规范的地址串,但无法成功加入连接时,输出字符串 FAIL。
3. 如果其提供的地址串不是符合规范的地址串,输出字符串 ERR。

样例输入

样例输入1
5
Server 192.168.1.1:8080
Server 192.168.1.1:8080
Client 192.168.1.1:8080
Client 192.168.1.1:80
Client 192.168.1.1:99999

样例输入2
10
Server 192.168.1.1:80
Client 192.168.1.1:80
Client 192.168.1.1:8080
Server 192.168.1.1:80
Server 192.168.1.1:8080
Server 192.168.1.999:0
Client 192.168.1.1.8080
Client 192.168.1.1:8080
Client 192.168.1.1:80
Client 192.168.1.999:0

样例输入3
见下载附件中的 network3.in

样例输入4
见下载附件中的 network4.in

样例输出

样例输出1
OK
FAIL
1
FAIL
ERR

样例输出2
OK
1
FAIL
FAIL
OK
ERR
ERR
5
1
ERR

样例输出3
见下载附件中的 network3.ans

样例输出4
见下载附件中的 network4.ans

提示

【样例解释 #1】
计算机 1 为服务机,提供符合规范的地址串 192.168.1.1:8080,成功建立连接;
计算机 2 为服务机,提供与计算机 1 相同的地址串,未能成功建立连接;
计算机 3 为客户机,提供符合规范的地址串 192.168.1.1:8080,成功加入连接,并连接到服务机 1;
计算机 4 为客户机,提供符合规范的地址串 192.168.1.1:80,找不到服务机与其连接;
计算机 5 为客户机,提供的地址串 192.168.1.1:99999 不符合规范。

【数据范围】
 


"性质 1" 为:保证所有的地址串均符合规范;
"性质 2" 为:保证对于任意两台不同的计算机,如果它们同为服务机或者同为客户机,则它们提供的地址串一定不同;
"性质 3" 为:保证任意一台服务机的编号都小于所有的客户机;
"性质 4" 为:保证所有的地址串均形如 a.b.c.d:e 的格式,其中 a,b,c,d,e 均为不超过 109 且不含有多余前导 0 的非负整数;
"性质 5" 为:保证所有的地址串均形如 a.b.c.d:e 的格式,其中 a,b,c,d,e 均为只含有数字的非空字符串。
对于 100% 的数据,保证 1≤n≤1000。

#copy的
#include<bits/stdc++.h>
using namespace std;
struct node {
	string ip;//地址串
	int m;//序号
}a[10005];
int fun(char ad[]) {//判断是否符合规范的函数
	int i,j,cnt1=0,cnt2=0,a,b,c,d,e;
	char s[300];//cn1存'.'的数量,cn2存':'的数量
	sscanf(ad,"%d.%d.%d.%d:%d",&a,&b,&c,&d,&e);//取出abcde的值
	sprintf(s,"%d.%d.%d.%d:%d",a,b,c,d,e);//重新保存
	for(i=0;i<strlen(ad);i++) {//计算'.'':'的数量
		if(ad[i]=='.') cnt1++;//'.'的数量
		if(ad[i]==':') cnt2++;//':'的数量
	}
	if(cnt1==3&&cnt2==1&&strlen(ad)==strlen(s)&&a>=0&&a<=255&&b>=0&&b<=255&&c>=0&&c<=255&&d>=0&&d<=255&&e>=0&&e<=65536)
	return 1;//符合规范
	return 0;//不符合规范
}
int main() {
	int n,i,j,t=0;//t表示共有几个符合规范的服务机
	char op[100],ad[300];//op存计算机类型,ad存计算机的地址串
	bool flag;//判断能否加入的状态变量
	cin>>n;
	for(i=1;i<=n;i++) 	{//n个计算机
		cin>>op>>ad;//型号和地址
		string s=ad;//保存地址
		if(fun(ad)==0) {//不符合规范
			cout<<"ERR"<<endl;
			continue;//下一组数据
		}
		if(op[0]=='S') {//服务机
 
			flag=true;//状态,表示可以建立或连接
			for(j=1;j<=t;j++)//遍历每个服务机
			if(s==a[j].ip) {//如果有同地址的服务机
				flag=false;//表示不能建立
				cout<<"FAIL"<<endl;//输出
				break;//提前结束循环
			}
			if(flag==true) {//可以建立
				cout<<"OK"<<endl;//输出
				a[++t].ip=s;//存储它的ip地址
				a[t].m=i;//存储下标
			}
		}
		else {//客户机
			flag=true;
			for(j=1;j<=t;j++) {//遍历服务机
				if(a[j].ip==s) {//有相同地址的服务机
					cout<<a[j].m<<endl;//输出它的下标
					flag=false;//标记可以连接
					break;//提前退出循环
				}
			}
			if(flag==true) {//没有同地址的服务机
				cout<<"FAIL"<<endl;//不能连接
			}
		}
	}
	return 0;
}

CSP-J2021-4小熊的果篮

总时间限制: 

10000ms

单个测试点时间限制: 

1000ms

内存限制: 

524288kB

描述

小熊的水果店里摆放着一排 n 个水果。每个水果只可能是苹果或桔子,从左到右依次用正整数 1,2,…,n 编号。连续排在一起的同一种水果称为一个"块"。小熊要把这一排水果挑到若干个果篮里,具体方法是:每次都把每一个"块"中最左边的水果同时挑出,组成一个果篮。重复这一操作,直至水果用完。注意,每次挑完一个果篮后,"块"可能会发生变化。比如两个苹果"块"之间的唯一桔子被挑走后,两个苹果"块"就变成了一个"块"。请帮小熊计算每个果篮里包含的水果。

输入

第一行,包含一个正整数 n,表示水果的数量。
第二行,包含 n 个空格分隔的整数,其中第 i 个数表示编号为 i 的水果的种类,1 代表苹果,0 代表桔子。

输出

输出若干行。
第 i 行表示第 i 次挑出的水果组成的果篮。从小到大排序输出该果篮中所有水果的编号,每两个编号之间用一个空格分隔。

样例输入

样例输入1
12
1 1 0 0 1 1 1 0 1 1 0 0

样例输入2
20
1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0

样例输入3
见下载附件中的 fruit3.in

样例输出

样例输出1
1 3 5 8 9 11
2 4 6 12
7
10

样例输出2
1 5 8 11 13 14 15 17
2 6 9 12 16 18
3 7 10 19
4 20

样例输出3
见下载附件中的 fruit3.ans

提示

【样例解释 #1】
这是第一组数据的样例说明。
所有水果一开始的情况是 [1,1,0,0,1,1,1,0,1,1,0,0],一共有 6 个块。
在第一次挑水果组成果篮的过程中,编号为 1,3,5,8,9,11 的水果被挑了出来。
之后剩下的水果是 [1,0,1,1,1,0],一共 4 个块。
在第二次挑水果组成果篮的过程中,编号为 2,4,6,12 的水果被挑了出来。
之后剩下的水果是 [1,1],只有 1 个块。
在第三次挑水果组成果篮的过程中,编号为 7 的水果被挑了出来。
最后剩下的水果是 [1],只有 1 个块。
在第四次挑水果组成果篮的过程中,编号为 10 的水果被挑了出来。

【数据范围】
对于 10% 的数据,n≤5。
对于 30% 的数据,n≤1000。
对于 70% 的数据,n≤50000。
对于 100% 的数据,1≤n≤2×105。

【提示】
由于数据规模较大,建议 C/C++ 选手使用 scanf 和 printf 语句输入、输出。

#include <bits/stdc++.h>

#define MAXN 200100

using namespace std;

int n, a[MAXN], l[MAXN], r[MAXN];
vector<int> b;

int main() {
    scanf("%d", &n);
    a[0] = a[n + 1] = -1, r[0] = 1, l[n + 1] = n;
    for (int i = 1; i <= n; i++) {
        scanf("%d", &a[i]);
        if (a[i] != a[i - 1]) b.push_back(i);
        l[i] = i - 1, r[i] = i + 1;
    }
    while (r[0] != n + 1) {
        vector<int> tmp;
        for (int i = 0; i < b.size(); i++) {
            printf("%d ", b[i]);
            int u = l[b[i]], v = r[b[i]];
            r[u] = v, l[v] = u;
            if (a[b[i]] != a[u] && a[b[i]] == a[v]) tmp.push_back(v); 
        }
        puts("");
        b = tmp;
    }
    return 0;
}

### 回答1: CSP(中国计算机科学会议)是中国著名的计算机科学研究机构。CSP J2021 初赛模拟试CSP组织为了选拔优秀学生而设计的一种测评方式。 CSP J2021初赛模拟试的主要目的是通过一系列的计算机科学相关考,评估考生在计算机科学领域的知识掌握程度和解决问的能力。这些目涵盖了数据结构、算法设计与分析、编程思维等方面,要求考生具备扎实的计算机基础和编程能力。 模拟试的设计不仅考察了考生的理论知识,还注重考察考生的实际动手能力。试通常包括多道编程和理论,考生需要根据目要求编写代码,解决实际问。同时,考生还需要写出思路分析、算法设计以及时间复杂度和空间复杂度的分析等理论方面的回答。 参加CSP J2021初赛模拟试有助于考生了解自己在计算机科学领域的不足之处,进而提升自己的学习和技能水平。同时,通过参加模拟试,考生也能提前了解到CSP选拔过程中的考点和难度,有利于充分准备真实的CSP考试。 对于参加CSP J2021初赛模拟试的考生来说,需要充分利用模拟试对自己进行评估,并结合评估结果进行针对性的学习和训练。通过大量的练习和实际编程项目的经验积累,考生可以提升自己的编程能力和解决问的能力,为未来的CSP考试做好充分准备。 ### 回答2: CSP-J2021初赛模拟试是一套为了评估学生的计算机科学素养和编程能力而设计的试。试包含多个目,涵盖了计算机科学的基础知识以及算法和数据结构的应用。 这套试注重帮助学生培养解决问的能力和编程思维。试中的问旨在考察学生对于特定问的分析能力和抽象能力,以及他们运用所学知识解决问的能力。 对于每个目,学生需要阅读目描述,根据目要求设计并实现一个相应的算法或程序。目中可能会给出输入输出的格式要求,学生需要根据要求编写程序并正确处理输入和输出。在实现算法或程序之前,学生需要首先理解目的要求,分析问的特点,设计一个合适的解决方案,然后才能进行编码实现。 模拟试在难度上参考了真实的CSP(计算机科学课程能力竞赛)的水平,因此对于学生来说可能具有一定的挑战性。解答试需要学生具备扎实的编程基础知识和良好的编程实践能力。 通过参加CSP-J2021初赛模拟试的练习,学生可以更好地了解自己在计算机科学和编程方面的能力水平。对于准备参加CSP的学生来说,这套试是一个很好的复习和准备工具。即使不打算参加CSP,通过解答试也可以帮助学生提升编程能力和解决问的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值