机器学习小白入门
文章平均质量分 71
Colin_Jing
北京某高校人工智能在读博士,欢迎交流!
展开
-
K-means算法的基本过程
K-means算法的基本过程K-means算法是无监督学习中的聚类算法,具体其实是一个迭代算法。基本过程是:随机给定聚类中心,进行簇随机分配移动聚类中心循环1和2其实就是在平面或者空间中将一些点进行分类,比如要分成两类,随机在平面或空间中放两个点,哪些点离这两个点更近,哪些点就被分配到这两个点中的一个,然后把这两个点分别移到刚刚分配好的点集的均值中心位置,此时再根据距离仅的规则再分配一次,然后再移动,不断迭代这个过程,直至收敛。话不多说,直接看图:先随机分类根据距离远近进行簇分配根原创 2021-06-22 11:59:28 · 7300 阅读 · 0 评论 -
随机梯度下降与Mini-batch梯度下降
随机梯度下降与Mini-batch梯度下降在讲随机梯度下降(stochastic gradient descent)与Mini-batch gradient descent之前,先简要说一下批量梯度下降(batch gradient descent)。批量梯度下降应该就是我们最初了解的那种梯度下降,特点就是每一次更新参数,都需要把数据集中全部的数据都遍历一遍。具体看公式:上图是一个实现逻辑回归模型参数更新的基本过程,其中hθ(x)h_\theta(x)hθ(x)是假设函数,Jtrain(θ)J_原创 2021-06-22 11:40:23 · 444 阅读 · 0 评论 -
机器学习系统构建方法
关于机器学习的系统构建方法和一些小技巧对于机器学习问题,如果我们能不断地对自己的模型有新的想法,并且能够将自己的想法实现,能做到这些就已经很不错了。关于如何系统地构建机器学习模型,我推荐下列步骤:用交叉验证的方法快速实现一个模型,不必管这个模型的好坏,只要快速做出来就好,避免提前优化。画学习曲线来决定下一步该怎么做,比如增加数据特征、增加数据量、减小正则化参数λ\lambdaλ等等措施。不知道学习曲线是什么的参考我的上一篇博客:机器学习如何正确调参之学习曲线进行误差分析,所谓误差分析就是去看看验原创 2021-06-21 17:12:32 · 352 阅读 · 0 评论 -
机器学习如何正确调参之学习曲线
利用学习曲线让你的机器学习模型效果更好我们知道,很多时候我们的机器学习或者深度学习的模型一开始效果并不是很好,当训练出来结果不是很好时,通常有下列几种方法:增加数据量尝试减少的特征尝试增加特征减小正则化参数λ\lambdaλ增大正则化参数λ\lambdaλ那么什么时候用那种方法呢?如果只凭直觉胡乱尝试,很多时候只会是浪费时间,模型效果也没有得到多大提升。这篇博客会告诉你用如何用学习曲线来根据机器模型的结果正确调参,让你把时间花在刀刃上!下面先介绍学习曲线:上图中Jcv_{cv}cv原创 2021-06-21 12:32:09 · 1902 阅读 · 0 评论 -
机器学习之多变量线性回归(第三篇)
由于我才刚写博客不久,所以写的很像大多数博客那种风格,只是把我所学的知识机械地讲出来了,但是却缺少了我自己的理解。我的上一篇博客机器学习之线性回归算法(第二篇),在写的时候我就感觉很别扭,总是希望把更多的知识细节写上去,但又觉得太冗杂了,所以这篇博客,我决定按我所想来写,抛去我所学知识的细节,用最通俗易懂的方式来表达我的想法。好的,在上篇博客中讨论的是单变量线性回归,在这篇中我要讲清楚如何处理多变量线性回归。其实你别看这些词啊,什么单变量多变量,听起来很唬人,其实就是方程中未知数的个数,单变量就是只有一原创 2021-03-29 21:06:57 · 152 阅读 · 0 评论 -
机器学习之线性回归算法(第二篇)
线性回归算法在这一篇博客中,我会表达我对今天学习的线性回归算法的理解。OK,目前要解决的问题就是,我们得到了一个数据集,也称做训练集。而机器学习的过程就是:计算机读取数据集计算机通过某种算法分析数据集计算机分析过后得出了一个线性函数h(x)这个h(x)可以很好地拟合数据集地数据,从而可以方便人们对某个特定的数据进行预测。上面的线性函数h(x)叫做假设函数,“某种算法”这里用的是梯度下降法。如果听不懂也没有关系,接下来我将介绍如何实现该算法。假设函数:h(x)=θ0+θ1xh(x)=\t原创 2021-03-29 00:15:29 · 208 阅读 · 0 评论 -
机器学习入门第一篇
机器学习定义及分类首先说明,我是北京某211一名大二的学生,现在对机器学习完全是0基础,我想要每天写博客来记录我机器学习之路。机器学习定义:计算机程序从经验E中学习,去解决任务T,结束时会得到完成任务的表现评价P,通过P对T的评定使得经验E不断提高。机器学习分类:监督学习(supervised learning):教计算机学习;无监督学习(unsupervised learning):让计算机自己学习强化学习推荐系统目前主要学习前两种。监督学习在我理解来看,就是用已知有“正确答案”的数据原创 2021-03-27 23:06:18 · 92 阅读 · 0 评论