算法
排序算法
排序算法基本分为八种
- 冒泡排序
- 插入排序
- 堆排序
- 选择排序
- 快速排序
- 归并排序
- 基数排序
- 希尔排序
当然,并不要求完全掌握全部的排序方法。虽然如此,理解其中的实现原理是很有必要的。这为我们遇到相似问题时提供思路
遇到排序问题时可以使用头文件algorthm中的sort()和stable_sort()函数来实现排序
sort()的实现用的是快速排序,并不稳定。需要稳定排序时可以用stable_sort()来实现,实现是归并排序。
两个排序的复杂度都是O(nlogn),但普遍地快速排序比归并排序快,所以在不需要稳定排序的情况下使用sort()来排序
sort()用法
两个参数sort(起始地址,末尾地址+1);
默认是升序排序。
代码示例:
#include<iostream>
#include<algorithm>
using namespace std;
int main(){
int a[10]={2,5,1,7,3,9,0,4,8,6};
sort(a,a+10);
for(int i = 0; i < 10; i++){
cout<<a[i]<<' ';
}
}
/*
输出:
0 1 2 3 4 5 6 7 8 9
*/
三个参数sort(起始地址,末尾地址+1,排序函数地址);
示例代码:
#include<iostream>
#include<algorithm>
bool cmp(int v1,int v2){
return v1>v2;
}
using namespace std;
int main(){
int a[10]={2,5,1,7,3,9,0,4,8,6};
sort(a,a+10,cmp);
for(int i = 0; i < 10; i++){
cout<<a[i]<<' ';
}
}
/*
输出:
9 8 7 6 5 4 3 2 1 0
*/
并查集
并查集虽然不是主流算法,但仍是很有必要学会的,它的作用并不小,在处理集合问题时显得无可替代
作用:
就是分集合,查看两个对象是否属于同一个集合。
原理:
- 用一个数组 f[i] 来实现,并初始化数组 f[i] = i
- 构建一定关系
- 需要一个find()函数查找
示例代码:
#include<iostream>
using namespace std;
//并查集数组
int f[10];
//查找函数
int find(int value){
if(value!=f[value])return f[value]=find(f[value]);
return value;
}
int main(){
//初始化f[i]数组
for(int i = 0; i < 10; i++){
f[i]=i;
}
//下面构建集合{0},{1,2,3,4},{5},{6,7,8,9}
f[find(1)]=find(2);
f[find(1)]=find(3);
f[find(1)]=find(4);
f[find(6)]=find(7);
f[find(6)]=find(8);
f[find(6)]=find(9);
//打印理解
for(int i = 0; i < 10; i++){
cout<<i<<" 属于集合 "<<find(i)<<endl;
}
}
/*
输出:
0 属于集合 0
1 属于集合 4
2 属于集合 4
3 属于集合 4
4 属于集合 4
5 属于集合 5
6 属于集合 9
7 属于集合 9
8 属于集合 9
9 属于集合 9
*/
搜索
二分搜索
二分搜索非常适合线性搜索,即问题具有一定的递增性或递减性,例如在0-1000000000中找一个数字,如果按照普通顺序的逐个检查将用会产生巨大的时间开销。二分搜索的时间复杂度为O(logn),大大地缩减了时间开销
原理:
- 取三个值,left = 最小范围 - 1 ,right = 最大范围 + 1,middle = (left + right)/2;
- 如果middle取值比理想中的要大,令 right = middle + 1,反则 left = middle - 1;
- 重复步骤2,直到middle == 理想值;
(注:以上是搜索整数的用法)
例题:
从0x80000000+1 到 0x7fffffff-1 中搜索1个数
示例代码:
#include<iostream>
using namespace std;
int main(){
cout<<"请输入一个 "<<(int)0x80000000+1<<" 到 "<<0x7fffffff-1<<" 的数字"<<endl;
int value;
cin>>value;
int l= (int)0x80000000;
int r= (int)0x7fffffff;
int ans=0;
while(1){
ans++;
int m=(l+r)/2;
if(m==value){
cout<<m<<endl<<"搜索次数: "<<ans;
break;
}
if(m>value){
r=m+1;
}else{
l=m-1;
}
}
}
/*
输出:
请输入一个 -2147483648 到 2147483646 的数字
5
5
搜索次数: 32
*/
三分搜索
三分搜索适用于类抛物线求最值
原理:
- 取四个值,left = 最小范围,right = 最大范围,middle1 = left + (left - right)/3,middle2 = right - (left + right)/3
- 前提需要知道类抛物线开口向上还是向下,如果开口向上,即求最小值,如果middle1>middle2,令left=middle1,反则right=middle2
- 重复步骤2,直到right - left == 一定精度
深度优先搜索
常叫dfs(Depth first search),搜索一种问题的所有可能
原理:
- 实现递归函数dfs(),按实际情况取参数
例题:
在地图
.s.#.
..#..
.#...
.#...
...e.
中s是入口,e是出口,#是障碍。每次只能走一步(上下左右)
求最短的步数
示例代码:
#include<iostream>
using namespace std;
//最小步数
int minStep=0x7fffffff;
//地图
char map[5][5]={'.','s','.','#','.','.','.','#','.','.','.','#','.','.','.','.','#','.','.','.','.','.','.','e','.'};
//标记数组,用来回溯
int sign[5][5]={0};
//dfs函数
void dfs(int step,int x,int y){
if(map[y][x]=='e'){
minStep=min(minStep,step);
}
//分别是上下左右
int m[4][2]{0,1,0,-1,-1,0,1,0};
for(int i = 0; i < 4; i++){
int x1=x+m[i][0];
int y1=y+m[i][1];
if(x1>=0&&x1<5&&y1>=0&&y1<5&&map[x1][y1]!='#'&&sign[y1][x1]==0){
sign[y1][x1]=1;
dfs(step+1,x+m[i][0],y+m[i][1]);
//回溯
sign[y1][x1]=0;
}
}
}
int main(){
int x,y;
//找出起点
for(int i = 0; i < 5; i++){
for(int j = 0; j < 5; j++){
if(map[i][j]=='s'){
x=j;
y=i;
}
}
}
//dfs
dfs(0,x,y);
cout<<minStep<<endl;
}
/*
输出:
8
*/
宽度优先搜索
常叫bfs(Width first search),一般用于最短路径问题
原理
- 用数据结构queue实现
- 一步一步搜索,搜到的就是最短路径
例题
与上同题
示例代码:
#include<iostream>
#include<queue>
using namespace std;
class node{
public:
int x,y,step;
};
int main(){
//地图
char map[5][5]={'.','s','.','#','.','.','.','#','.','.','.','#','.','.','.','.','#','.','.','.','.','.','.','e','.'};
//标记数组
int sign[5][5]={0};
queue<node> q;
node p;
//找出起点
for(int i = 0; i < 5; i++){
for(int j = 0; j < 5; j++){
if(map[i][j]=='s'){
p.x=j;
p.y=i;
p.step=0;
}
}
}
q.push(p);
sign[p.y][p.x]=1;
//bfs
while(!q.empty()){
//分别是上下左右
int m[4][2]{0,1,0,-1,-1,0,1,0};
node d=q.front();
q.pop();
if(map[d.y][d.x]=='e'){
cout<<d.step<<endl;
break;
}
for(int i = 0; i < 4; i++){
int x1=d.x+m[i][0];
int y1=d.y+m[i][1];
if(x1>=0&&x1<5&&y1>=0&&y1<5&&map[x1][y1]!='#'&&sign[y1][x1]==0){
sign[y1][x1]=1;
node e;
e.x=x1;
e.y=y1;
e.step=d.step+1;
q.push(e);
}
}
}
}
/*
输出:
8
*/
动态规划
动态规划(Dynamic Programming),简称dp,通过维护记忆化dp数组减少重复步骤的计算,大大减低时间复杂度
典型例题:
求最长递增子串长度,如f[8]={1,4,2,3,5,8,6,7}。答案是6,{1,2,3,5,6,7}
理解:
- 用dp[n]储存0~n之间的最大连续子串长度
- 如dp[0]=1,因为f[1]>f[0],所以有dp[1]=max(dp[1],dp[0]+1)
- 一直执行步骤2,直到遍历数组
示例代码:
#include<iostream>
#include<string>
using namespace std;
int main(){
int f[8]={1,4,2,3,5,8,6,7};
int dp[8];
string s[8];
//初始化dp[],s[]
for(int i=0;i<8;i++){
dp[i]=1;
s[i]+=to_string(f[i]);
}
//dp
for(int i=0;i<8;i++){
for(int j=0;j<i;j++){
if(f[i]>f[j]){
if(dp[i]<dp[j]+1){
dp[i]=dp[j]+1;
s[i]=s[j]+to_string(f[i]);
}
}
}
}
int ma=0;
for(int i=1;i<8;i++){
if(dp[ma]<dp[i]){
ma=i;
}
}
cout<<dp[ma]<<endl;
cout<<"{";
for(int i=0;i<s[ma].size();i++){
if(i!=0){
cout<<',';
}
cout<<s[ma][i];
}
cout<<'}';
}
/*
输出:
6
{1,2,3,5,6,7}
*/