安装同时适配Pytorch和Tensorflow的CUDA和cuDNN,并最终完成Pytorch和Tensorflow安装

本教程针对在Windows10环境下通过Anconda环境,首先安装同时适配Pytorch和Tensorflow的CUDA和cuDNN,并最终完成Pytorch和Tensorflow安装,选择Pytorch2.6.0版本,Tensorflow2.10.0版本,CUDA11.8版本,cuDNN8.2.1版本

前置内容

Pytorch版本

官网:PyTorch

Tensorflow版本

★注意:原生 Windows 上的 GPU 支持仅适用于 2.10 或更早版本,从 TF 2.11 开始,Windows 不支持 CUDA 构建。要在 Windows 上使用 TensorFlow GPU,您需要在 WSL2 中构建/安装 TensorFlow,或者使用 tensorflow-cpu 配合 TensorFlow-DirectML-Plugin。

Version

Python version

Compiler

Build tools

cuDNN

CUDA

tensorflow_gpu-2.10.0

3.7-3.10

MSVC 2019

Bazel 5.1.1

8.1

11.2

tensorflow_gpu-2.9.0

3.7-3.10

MSVC 2019

Bazel 5.0.0

8.1

11.2

tensorflow_gpu-2.8.0

3.7-3.10

MSVC 2019

Bazel 4.2.1

8.1

11.2

tensorflow_gpu-2.7.0

3.7-3.9

MSVC 2019

Bazel 3.7.2

8.1

11.2

tensorflow_gpu-2.6.0

3.6-3.9

MSVC 2019

Bazel 3.7.2

8.1

11.2

tensorflow_gpu-2.5.0

3.6-3.9

MSVC 2019

Bazel 3.7.2

8.1

11.2

tensorflow_gpu-2.4.0

3.6-3.8

MSVC 2019

Bazel 3.1.0

8.0

11.0

tensorflow_gpu-2.3.0

3.5-3.8

MSVC 2019

Bazel 3.1.0

7.6

10.1

tensorflow_gpu-2.2.0

3.5-3.8

MSVC 2019

Bazel 2.0.0

7.6

10.1

tensorflow_gpu-2.1.0

3.5-3.7

MSVC 2019

Bazel 0.27.1-0.29.1

7.6

10.1

tensorflow_gpu-2.0.0

3.5-3.7

MSVC 2017

Bazel 0.26.1

7.4

10

tensorflow_gpu-1.15.0

3.5-3.7

MSVC 2017

Bazel 0.26.1

7.4

10

tensorflow_gpu-1.14.0

3.5-3.7

MSVC 2017

Bazel 0.24.1-0.25.2

7.4

10

tensorflow_gpu-1.13.0

3.5-3.7

MSVC 2015 update 3

Bazel 0.19.0-0.21.0

7.4

10

tensorflow_gpu-1.12.0

3.5-3.6

MSVC 2015 update 3

Bazel 0.15.0

7.2

9.0

tensorflow_gpu-1.11.0

3.5-3.6

MSVC 2015 update 3

Bazel 0.15.0

7

9

tensorflow_gpu-1.10.0

3.5-3.6

MSVC 2015 update 3

Cmake v3.6.3

7

9

tensorflow_gpu-1.9.0

3.5-3.6

MSVC 2015 update 3

Cmake v3.6.3

7

9

tensorflow_gpu-1.8.0

3.5-3.6

MSVC 2015 update 3

Cmake v3.6.3

7

9

tensorflow_gpu-1.7.0

3.5-3.6

MSVC 2015 update 3

Cmake v3.6.3

7

9

tensorflow_gpu-1.6.0

3.5-3.6

MSVC 2015 update 3

Cmake v3.6.3

7

9

tensorflow_gpu-1.5.0

3.5-3.6

MSVC 2015 update 3

Cmake v3.6.3

7

9

tensorflow_gpu-1.4.0

3.5-3.6

MSVC 2015 update 3

Cmake v3.6.3

6

8

tensorflow_gpu-1.3.0

3.5-3.6

MSVC 2015 update 3

Cmake v3.6.3

6

8

tensorflow_gpu-1.2.0

3.5-3.6

MSVC 2015 update 3

Cmake v3.6.3

5.1

8

tensorflow_gpu-1.1.0

3.5

MSVC 2015 update 3

Cmake v3.6.3

5.1

8

tensorflow_gpu-1.0.0

3.5

MSVC 2015 update 3

Cmake v3.6.3

5.1

8

参考连接:Tensorflow与Python、CUDA、cuDNN的版本对应表_tensorflow版本对应-CSDN博客

安装

安装CUDA和cuDNN

Anconda环境

因为Pytorch的2.6.0版本需要python环境在3.9及以上版本,而Tensorflow要支持GPU使用最高只能使用2.10.0版本需要Python版本在3.7-3.10,最终选择python版本3.10

1. 创建虚拟环境
conda create -n py-pt-tf python=3.10.16 -y
2. 激活虚拟环境
conda avtivate py-pt-tf

CUDA安装

1. 查看CUDA支持版本
nvidia-smi

选择的CUDA版本不得超过当前支持的版本,CUDA支持向下兼容

2. 查看cuDNN和CUDA可安装版本
# 查看cuDNN可安装版本
conda search cudnn

# 查看CUDA可安装版本
conda search cudatoolkit
3. 安装cuDNN和CUDA
# 安装cuDNN的8.2.1版本
conda install cudnn=8.2.1

# 安装cuDNN的11.3.1版本
conda install cudatoolkit=11.3.1

安装Tensorflow

通过pip的方式安装trnsorflow==2.10.0,通过https://pypi.mirrors.ustc.edu.cn/simple/ 中国科学技术大学镜像源

pip install trnsorflow==2.10.0 -i https://pypi.mirrors.ustc.edu.cn/simple/ 

验证Tensorflow

import tensorflow as tf
print(tf.config.list_physical_devices('GPU'))

可能出现的报错及解决

NumPy版本兼容性问题

在验证时可能会出现NumPy版本兼容性问题因为在创建Anconda环境中NumPy版本过高

A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.4 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2.

解决:降级 NumPy 到 1.x 版本

pip install "numpy<2" --force-reinstall

安装Pytorch

方式一(很慢-不推荐)

进入Pytorch官网然后选择当前版本的CUDA后通过pip安装

方式二(推荐)

以CUDA11.8版本为例

  1. 进入Pytorch官网,选择CUDA版本后在执行命令中将网址https://download.pytorch.org/whl/cu118输入浏览器后按ctrl+f依次搜索torch、torchvision、torchaudio

  1. 进入torch后选择对应CUDA和python版本的torch版本

注:cu表示CUDA版本,cp表示python版本

  1. 右键,复制链接后通过迅雷进行下载

  1. torchvision、torchaudio操作一致

验证Pytorch

import torch
print(torch.cuda.is_available())  # 由于CUDA版本暂不兼容,此时为Flase

至此已在python版本为3.10.16上完成了Pytorch和Tensorflow的安装

升级CUDA版本兼容Pytorch

注:此时升级CUDA版本为Pytorch兼容的11.8版本但是不升级cuDNN版本,避免Tensorflow不兼容

#  CUDA 11.8(conda-forge 源)
conda install cudatoolkit=11.8.0 -c conda-forge -y

# 强制锁定 cuDNN 版本为 8.2.1(避免自动升级)
conda install cudnn=8.2.1 --freeze-installed -c conda-forge -y

验证

import torch
import tensorflow as tf
# 验证Pytorch
print(torch.cuda.is_available()) # True
# 验证Tensorflow
print(tf.config.list_physical_devices('GPU'))

《宾馆客房管理系统》是一个基于C#与MySQL的项目,旨在帮助学习者掌握数据库管理系统开发知识。该项目通过完整代码实现,将编程技术应用于宾馆客房管理的实际业务场景。 C#是微软开发的面向对象编程语言,广泛用于Windows应用程序开发。在本项目中,C#用于构建用户界面、处理业务逻辑以及与数据库交互。它拥有丰富的类库,便于开发复杂图形用户界面(GUI),并通过ADO.NET组件实现与MySQL数据库的连接。MySQL是一种流行的开源关系型数据库管理系统(RDBMS),常用于Web应用程序,用于存储客房、预订、客户等核心数据。通过SQL语句,开发者可对数据进行增、删、改、查操作。系统中可能涉及“客房表”“预订表”“客户表”等,包含客房编号、类型、价格、预订日期等字段。 数据库连接是系统的关键部分。C#通过ADO.NET的SqlConnection类连接MySQL数据库,连接字符串包含服务器地址、数据库名称、用户名密码。用户下载项目后,需根据本地环境修改连接字符串中的用户名密码。系统主要功能模块包括:客房管理,可展示、添加、修改、删除客房信息;预订管理,处理预订的查看、新增、修改取消;客户管理,存储管理客户个人信息;查询功能,支持按客房类型、价格范围、预订日期等条件查询;报表统计功能,生成入住率、收入统计等报表辅助决策。开发者需编写C#方法对应数据库操作,同时设计直观易用的界面,方便用户完成预订流程。项目中的MySQL文件可能是数据库脚本或配置文件,包含建表、数据填充及权限设置等内容,用户需在本地测试前运行脚本设置数据库环境。 总之,该系统结合C#MySQL,为学习者提供了一个涵盖数据库设计、业务逻辑处理界面开发的综合实践案例,有助于提升开发者在数据库应用系统集成方面的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值