为什么深度学习在输入多模态信息需要通过标准化进行数据预处理

为什么要标准化?

(1) 消除量纲差异
  • 问题:不同特征的单位和取值范围差异巨大(例如:坐标值可能为 [0, 1000],速度值为 [0, 30],角度为 [-π, π])。

  • 后果:模型(如神经网络)会天然倾向于数值大的特征(如坐标),而忽略数值小的特征(如速度)。

  • 解决:标准化将所有特征缩放到接近 0 均值、1 标准差的标准正态分布附近。

(2) 加速模型收敛
  • 梯度优化:标准化后数据分布更对称,梯度下降方向更明确,避免模型在训练中“震荡”。

  • 激活函数敏感度:如Sigmoid、Tanh在输入接近0时梯度最大,标准化让特征值落在激活函数的敏感区间。

(3) 增强泛化能力
  • 消除数据分布偏移(如不同场景的坐标中心差异),提高模型对新场景的适应能力。

2. 标准化的公式

标准化通过以下公式将原始特征值转换为均值为 0、标准差为 1 的分布:

标准化值=  原始值−均值(mean)​ / 标准差(std)

公式解读
  • 均值(mean):特征的算术平均值,用于中心化(将数据平移到以0为中心)。

  • 标准差(std):数据的离散程度,用于缩放数据到合理范围。


3. 标准化 vs. 归一化(Normalization)

方法公式适用场景
标准化(x−μ)/σ​特征分布近似高斯分布
归一化(Min-Max)(x−min)/max−min特征边界明确(如图像像素值)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值