代码随想录算法训练营第七天|454.四数相加II 、383. 赎金信 、15. 三数之和 、 18. 四数之和|纯小白python

454.四数相加II

题目

给你四个整数数组 nums1nums2nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足:

  • 0 <= i, j, k, l < n
  • nums1[i] + nums2[j] + nums3[k] + nums4[l] == 0

思路 

一开始我想着是分成两类:一类是正,一类是负。然后先在正的里面找一个,负数组里找一个,剩下三个相加,看这个结果和正数相加是否为0。然后再在负里找一个。最后还剩一类:两正两负。但是对于这种情况,我不知道怎么处理。然后看代码随想录的思路,是将前两个数组相加放到字典里,键为相加的结果,值为出现的次数。然后再将后两个数组相加得到的结果与字典进行比较。我一直不会python中字典的创建方法。

代码随想录的代码

代码

class Solution(object):
    def fourSumCount(self, nums1, nums2, nums3, nums4):
        # 使用字典存储nums1和nums2中的元素及其和
        hashmap = dict()
        for n1 in nums1:
            for n2 in nums2:
                if n1 + n2 in hashmap:
                    hashmap[n1+n2] += 1
                else:
                    hashmap[n1+n2] = 1
        
        # 如果 -(n1+n2) 存在于nums3和nums4, 存入结果
        count = 0
        for n3 in nums3:
            for n4 in nums4:
                key = - n3 - n4
                if key in hashmap:
                    count += hashmap[key]
        return count

这个思路还是要学习的以及对于字典的处理方法。 

383. 赎金信

题目

给你两个字符串:ransomNote 和 magazine ,判断 ransomNote 能不能由 magazine 里面的字符构成。

如果可以,返回 true ;否则返回 false 。

magazine 中的每个字符只能在 ransomNote 中使用一次。

尝试解答

这道题和有效的字母异位词类似,找magazine里是否存在ransomNote。同样也是只有26个小写字母,可以考虑用数组解答。

class Solution(object):
    def canConstruct(self, ransomNote, magazine):
        """
        :type ransomNote: str
        :type magazine: str
        :rtype: bool
        """
        nums1=[0]*26
        nums2=[0]*26
        for i in ransomNote:
            nums1[ord(i)-ord("a")]+=1
        for i in magazine:
            nums2[ord(i)-ord("a")]+=1
        for i in range(26):
            if nums2[i]<nums1[i]:
                return False
        return True   

代码随想录的代码

代码

class Solution:
    def canConstruct(self, ransomNote: str, magazine: str) -> bool:
        ransom_count = [0] * 26
        magazine_count = [0] * 26
        for c in ransomNote:
            ransom_count[ord(c) - ord('a')] += 1
        for c in magazine:
            magazine_count[ord(c) - ord('a')] += 1
        return all(ransom_count[i] <= magazine_count[i] for i in range(26))

15. 三数之和

题目

给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != ji != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请

你返回所有和为 0 且不重复的三元组。

注意:答案中不可以包含重复的三元组。

尝试解答

大致思路是先把数组中的数与除了自身的数都相加一遍,然后看数组里是否存在这个结果的相反数。

class Solution(object):
    def threeSum(self, nums):
        """
        :type nums: List[int]
        :rtype: List[List[int]]
        """
        nums1=[]
        for i in range(len(nums)):
            for n2 in nums[i+1:]:
                a=-(nums[i]+n2)
                if a in nums:
                    nums1.append([nums[i],n2,a])
        return nums1

 这段代码结果不对,输出的是重复的结果。

代码随想录的代码

代码1(双指针法)

class Solution:
    def threeSum(self, nums: List[int]) -> List[List[int]]:
        result = []
        nums.sort()
        
        for i in range(len(nums)):
            # 如果第一个元素已经大于0,不需要进一步检查
            if nums[i] > 0:
                return result
            
            # 跳过相同的元素以避免重复
            if i > 0 and nums[i] == nums[i - 1]:
                continue
                
            left = i + 1
            right = len(nums) - 1
            
            while right > left:
                sum_ = nums[i] + nums[left] + nums[right]
                
                if sum_ < 0:
                    left += 1
                elif sum_ > 0:
                    right -= 1
                else:
                    result.append([nums[i], nums[left], nums[right]])
                    
                    # 跳过相同的元素以避免重复
                    while right > left and nums[right] == nums[right - 1]:
                        right -= 1
                    while right > left and nums[left] == nums[left + 1]:
                        left += 1
                        
                    right -= 1
                    left += 1
                    
        return result

 代码随想录中也说了

“两层for循环就可以确定 a 和b 的数值了,可以使用哈希法来确定 0-(a+b) 是否在 数组里出现过,其实这个思路是正确的,但是我们有一个非常棘手的问题,就是题目中说的不可以包含重复的三元组。

把符合条件的三元组放进vector中,然后再去重,这样是非常费时的,很容易超时,也是这道题目通过率如此之低的根源所在。

去重的过程不好处理,有很多小细节,如果在面试中很难想到位。

时间复杂度可以做到O(n^2),但还是比较费时的,因为不好做剪枝操作。

大家可以尝试使用哈希法写一写,就知道其困难的程度了。”

也行,至少哈希法的思路掌握了。

代码随想录推荐双指针法,

思路1:两个指针,一个指头一个指尾。再来一个指针遍历它们之间的元素。但其实我不知道这会不会重复,先写个试试吧----不对,确实没重复,但是没有遍历完

思路2:两个指针,一个指头固定不动,另一个指尾,逐渐减小。再来一个指针遍历它们之间的元素,除了[0,0,0]外,正确。关键就是去重

还是看看代码随想录的代码吧

学习 

开始可以sort排序一下,如果首位大于0,直接输出空-----没想过

而且排序之后,去重就比较简单,直接跳过相同元素就行。一共是三次跳过,可以理解成三个指针吧,左右两个,还有一个遍历的。所以判读三次,首先是对于遍历指针的判断跳过,如果存在重复元素,就跳过。然后是对于左右指针的判断,重复就跳过。

而对于指针的移动,当和小于0时,移动左指针。当和大于0时,移动右指针。-----感觉这个好熟悉,翻看了一下,与二分查找有点类似。

代码2(字典) 

class Solution:
    def threeSum(self, nums: List[int]) -> List[List[int]]:
        result = []
        nums.sort()
        # 找出a + b + c = 0
        # a = nums[i], b = nums[j], c = -(a + b)
        for i in range(len(nums)):
            # 排序之后如果第一个元素已经大于零,那么不可能凑成三元组
            if nums[i] > 0:
                break
            if i > 0 and nums[i] == nums[i - 1]: #三元组元素a去重
                continue
            d = {}
            for j in range(i + 1, len(nums)):
                if j > i + 2 and nums[j] == nums[j-1] == nums[j-2]: # 三元组元素b去重
                    continue
                c = 0 - (nums[i] + nums[j])
                if c in d:
                    result.append([nums[i], nums[j], c])
                    d.pop(c) # 三元组元素c去重
                else:
                    d[nums[j]] = j
        return result

感觉去重的操作确实比双指针法要麻烦 

18. 四数之和

题目

给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复):

  • 0 <= a, b, c, d < n
  • abc 和 d 互不相同
  • nums[a] + nums[b] + nums[c] + nums[d] == target

你可以按 任意顺序 返回答案 。

尝试解答

和三数之和差不多,双指针法。但是和四数相加II不同,这个不需要去重。三数之和、四数之和需要去重。

class Solution(object):
    def fourSum(self, nums, target):
        """
        :type nums: List[int]
        :type target: int
        :rtype: List[List[int]]
        """
        nums.sort()
        n=len(nums)
        result=[]
        for i in range(n):
            if i>0 and nums[i]==nums[i-1]:
                continue
            for j in range(i+1,n):
                if j>i+1 and nums[j]==nums[j-1]:
                    continue
                left=j+1
                right=n-1
                while right>left:
                    a=nums[i]+nums[j]+nums[left]+nums[right]
                    if a>target:
                        right-=1
                    elif a<target:
                        left+=1
                    else:
                        result.append([nums[i],nums[j],nums[left],nums[right]])
                        while left<right and nums[left]==nums[left+1]:
                            left+=1
                        while left<right and nums[right]==nums[right-1]:
                            right-=1
                        left+=1
                        right-=1
        return result

代码随想录的代码

代码

class Solution:
    def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
        nums.sort()
        n = len(nums)
        result = []
        for i in range(n):
            if nums[i] > target and nums[i] > 0 and target > 0:# 剪枝(可省)
                break
            if i > 0 and nums[i] == nums[i-1]:# 去重
                continue
            for j in range(i+1, n):
                if nums[i] + nums[j] > target and target > 0: #剪枝(可省)
                    break
                if j > i+1 and nums[j] == nums[j-1]: # 去重
                    continue
                left, right = j+1, n-1
                while left < right:
                    s = nums[i] + nums[j] + nums[left] + nums[right]
                    if s == target:
                        result.append([nums[i], nums[j], nums[left], nums[right]])
                        while left < right and nums[left] == nums[left+1]:
                            left += 1
                        while left < right and nums[right] == nums[right-1]:
                            right -= 1
                        left += 1
                        right -= 1
                    elif s < target:
                        left += 1
                    else:
                        right -= 1
        return result

差不多 

代码随想录算法训练营是一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练营中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练营还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练营中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14天的训练营中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练营还提供了每日的讨论知识点,例如在第15天的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16天的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练营是一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练营每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值