一、皮尔逊相关系数(Pearson)
1.总体皮尔逊相关系数
图源于清风数模
2.样本皮尔逊相关系数
图源于清风数模
3.注意
皮尔逊相关系数大并不能说明两个变量具有很强的相关性,必须先画散点图去寻找是否两个变量之间是线性的关系,如果是的话才能根据皮尔逊相关系数判断两个变量间的相关性。
离群点对相关系数影响很大,所以在求相关系数前需要清除异常值。
相关系数大不能说明两者相关,需要画散点图看一看。
相关系数为0只说明不是线性相关,还有可能是非线性相关。
4.建模操作
在matlab使用corrcoef函数计算相关系数,通过spss画矩阵散点图来观察是否为线性关系
三、假设检验
1.假设检验的目的
在实际建模中一般通过假设检验去判断相关性是否显著、是否为正态分布等一系列需要检验的东西。
一般设原假设为r=0即不相关,拒绝原假设r=0就说相关
设原假设为服从正态分布,通过原假设就可以认为服从正态分布
2.假设检验的原理、步骤
要设两个截然相反的假设,H0:原假设,H