相关系数和假设检验

本文介绍了皮尔逊相关系数的计算与注意事项,强调需结合散点图判断线性关系,并讨论了离群值的影响。接着阐述了假设检验的目的与步骤,特别提到了皮尔逊相关系数的假设检验方法。此外,还涉及正态分布检验,包括JB和Shapiro-Wilk检验。最后,简单介绍了斯皮尔曼相关系数及其在大样本情况下的假设检验应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、皮尔逊相关系数(Pearson)

1.总体皮尔逊相关系数

图源于清风数模

2.样本皮尔逊相关系数

图源于清风数模

3.注意

皮尔逊相关系数大并不能说明两个变量具有很强的相关性,必须先画散点图去寻找是否两个变量之间是线性的关系,如果是的话才能根据皮尔逊相关系数判断两个变量间的相关性。

离群点对相关系数影响很大,所以在求相关系数前需要清除异常值。

相关系数大不能说明两者相关,需要画散点图看一看。

相关系数为0只说明不是线性相关,还有可能是非线性相关。

4.建模操作

在matlab使用corrcoef函数计算相关系数,通过spss画矩阵散点图来观察是否为线性关系

三、假设检验

1.假设检验的目的

在实际建模中一般通过假设检验去判断相关性是否显著、是否为正态分布等一系列需要检验的东西。

一般设原假设为r=0即不相关,拒绝原假设r=0就说相关

设原假设为服从正态分布,通过原假设就可以认为服从正态分布

2.假设检验的原理、步骤

要设两个截然相反的假设,H0:原假设,H

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值