[秩相关] Spearman秩相关系数计算及假设检验

首先说明秩相关系数还有其他类型,比如kendal秩相关系数。

使用Pearson线性相关系数有2个局限:

  1. 必须假设数据是成对地从正态分布中取得的。
  2. 数据至少在逻辑范围内是等距的。

对于更一般的情况有其他的一些解决方案,Spearman秩相关系数就是其中一种。Spearman秩相关系数是一种无参数(与分布无关)检验方法,用于度量变量之间联系的强弱。在没有重复数据的情况下,如果一个变量是另外一个变量的严格单调函数,则Spearman秩相关系数就是+1或-1,称变量完全Spearman秩相关。注意这和Pearson完全相关的区别,只有当两变量存在线性关系时,Pearson相关系数才为+1或-1。

对原始数据xi,yi按从大到小排序,记x'i,y'i为原始xi,yi在排序后列表中的位置,x'i,y'i称为xi,yi的秩次,秩次差di=x'i-y'i。Spearman秩相关系数为:

           

位置原始X排序后秩次原始Y排序后秩次秩次差
112546517861
2546451784610
31332424551
44513246620
5321236241
62264513-3

对于上表数据,算出Spearman秩相关系数为:1-6*(1+1+1+9)/(6*35)=0.6571

如果原始数据中有重复值,则在求秩次时要以它们的平均值为准,比如:

原始X秩次调整后的秩次
0.855
1.24(4+3)/2=3.5
1.23(4+3)/2=3.5
2.322
1811

假设检验:

Spearman秩相关系数也应该进行假设检验,当n小于等于50时,用查表法,当n大于50时,计算统计量t的值,即用前面皮尔森相关系数假设检验中t值的计算方式。


对于上述数据,查阅秩相关系数检验的临界值表

n显著水平
0.050.01
50.91
60.8290.943
70.7140.893

置信度=1-显著水平。上表显示在n=6的时候,当spearman秩相关系数>=0.829时我们有95%的置信度认为两个随机变量相关,当spearman秩相关系数>=0.943时我们有99%的置信度认为两个随机变量相关。由于0.6571<0.829,即置信度达不到95%,所以我们不能认为X和Y相关。


实例:



评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值