I I I. 题面描述
I I II II. 心路历程
14:00 开始比赛,先看T1。
第一眼贪心:先删 v x v_x vx 最小的,然后删的过程中计算剩下数的大小,很显然剩余的数字要在 5 5 5 个以内,否则我们可以再删掉一个代价小于 1 0 5 10^5 105 的数,结果更优。
14:50 敲完以后才发现, 1 − 9 1 - 9 1−9 每个数的个数都很多,删的时候删不同的位置结果不同。逐放弃该做法。
15:10 实在想不下去了,开T2。
T2 想出来了一个神奇做法,先降低温度,再对于子树升高温度,并且保证越靠近根节点温度约接近0。
16:30 实现差不多了,但是样例过不了,后来发现有漏洞,不好调,于是放弃。
17:00 该结束了,赶快把T1dfs暴力打上去,喜提 16 p t s 16pts 16pts 结束。
I I I III III. 思路
引理
- 删完后剩余的数字要在 5 5 5 个以内。
证明
- 如果删完后剩余的数字不在 5 5 5 个以内,那么我们可以再删掉一个数字。因为 v v v 最大是 1 0 5 10^5 105 ,删除后对结果的贡献小于等于 1 0 5 10^5 105 ,而如果直接把剩余的数字全部删除贡献必定更大,因此这样结果更优。
24 p t s 24pts 24pts 做法
dfs,枚举每个数位对答案的贡献是 v v v 还是和其他的组成小于 5 5 5 位数,每个数位有取或不取两种情况,时间复杂度 O ( 2 n ) O(2^n) O(2n) .