【滑动窗口/双指针2】Atcoder Beginner Contest366 E题题解

Atcoder Beginner Contest E题题解

题意描述

题目传送门

给定平面上的 n n n 个点 ( a x , a y ) (ax,ay) (ax,ay),给定一个非负整数 d d d ,求平面上有多少个点离所有给定点的曼哈顿距离总和不超过 d d d ,即找出有多少个整数对 ( x , y ) (x,y) (x,y) 满足 s i g m a ( i = 1 , n ) ( ∣ x − x i ∣ + ∣ y − y i ∣ ) ≤ d sigma(i=1,n) (|x-x_i|+|y-y_i|) \leq d sigma(i=1,n)(xxi+yyi)d

其中 n ≤ 2 ∗ 1 0 5 , d ≤ 1 0 6 n \leq 2*10^5 , d \leq 10^6 n2105,d106

思路分析

首先解释什么是曼哈顿距离

对于两个点 ( x i , y i ) (x_i,y_i) (xi,yi) ( x j , y j ) (x_j,y_j) (xj,yj) ,它们的曼哈顿距离为 ( ∣ x i − x j ∣ + ∣ y i − y j ∣ ) (|x_i-x_j|+|y_i-y_j|) (xixj+yiyj) ,即两个点的横纵坐标差之和。

利用这个概念,我们不妨来想,可不可以分别处理这些点在横轴和纵轴上的距离呢?

对此,我们转化一下题目:找出有多少个整数对 ( x , y ) (x,y) (x,y) 满足 s i g m a ( i = 1 , n ) ( ∣ x − x i ∣ ) + s i g m a ( i = 1 , n ) ( ∣ y − y i ∣ ) ≤ d sigma(i=1,n) (|x-x_i|) +sigma(i=1,n)(|y-y_i|) \leq d sigma(i=1,n)(xxi)+sigma(i=1,n)(yyi)d

那么,我们只要分别处理出横纵两个轴上它们离每一个点的的距离总和即可,很显然设在一个轴上一共有 N N N 个可能对答案有贡献的点,那么 N ≤ n + d N \leq n+d Nn+d ,即 m a x N = 2 ∗ 1 0 6 max_N = 2*10^6 maxN=2106,所以做到这一点时间是 O ( N 2 ) O(N^2) O(N2) 的,不可以接受。

接下来我们考虑如何进行优化考虑递推

下文以横轴举例,纵轴同理

我们发现,每次往后推的时候,会出现一些点从在该点右边变到了左边,大家可以想象成是一条线扫过去,每次线左边的点的横坐标小于线的横坐标,右边的点的横坐标大于线的横坐标,那么我们根据上一次的更新答案即可。

可以想象成这个样子
示意图

具体做法是,先统计线左右两边的点的个数,统计一个另一个减一下就可以。然后从上一次出发,左边的点的距离都加1,右边的点距离都减1,再递推更新答案即可。

我们只需要先将点按横坐标排序,接下来每次统计新的变化的点的个数即可。由于有 n n n 个点,所以内层循环总共会执行 n n n 次,复杂度优化为 O ( N + n ) O(N+n) O(N+n)

这种做法有一个大名鼎鼎的名字:滑动窗口,或者说双指针。


根据上述的方法,我们可以处理出 对于任意的 x x x f x ( x ) = s i g m a ( i = 1 , n ) ( ∣ x − x i ∣ ) fx(x) = sigma(i=1,n) (|x-x_i|) fx(x)=sigma(i=1,n)(xxi) 和对于任意的 y y y f y ( y ) = s i g m a ( i = 1 , n ) ( ∣ y − y i ∣ ) fy(y) = sigma(i=1,n) (|y-y_i|) fy(y)=sigma(i=1,n)(yyi) 。接下来,我们只需要找有多少对 ( x , y ) (x,y) (x,y) 满足 f x ( x ) + f y ( y ) ≤ d fx(x)+fy(y) \leq d fx(x)+fy(y)d 即可。

和上面的方法一样,我们还是采用“滑动窗口”的思路。

我们把 f x , f y fx,fy fx,fy 两个数组从大到小排序,接着枚举其中一个用滑动窗口解决另外一个,可以证明如果 f x ( x ) + f y ( p ) ≤ d fx(x)+fy(p) \leq d fx(x)+fy(p)d ,那么排序后所有的 f y ( i ) ( i ≤ p ) fy(i) (i \leq p) fy(i)(ip) 也一定是一个答案,所以这个时候 p p p 可以直接传下去,对接下来的答案产生贡献。

代码实现

#include <bits/stdc++.h>
using namespace std;
#define intt long long
intt n,d,x[2000005],y[2000005]; 
intt ans = 0;
int N = 2000000;
intt fx[4000005],fy[4000005];
intt cntx,cnty,p;
int main()
{
	cin >> n >> d;
	for (int i=0;i<n;i++)              // Warning 1
	{
		scanf("%lld%lld",&x[i],&y[i]);
		cntx += x[i];
		cnty += y[i];
	}
	sort(x,x+n); 
	fx[0] = cntx + n * N;               // Warning 2
	p = 0;                              // Warning 1
	for (int i=1;i<=N*2;i++)
	{
		while (p < n && x[p] < i - N) p++;   // Warning 2
		fx[i] = fx[i-1]+p*2-n;
	}
	sort(y,y+n);
	fy[0] = cnty + n * N;
	p = 0;
	for (int i=1;i<=2*N;i++)
	{
		while (p < n && y[p] < i - N) p++;
		fy[i] = fy[i-1]+p*2-n;
	}
	sort(fx,fx+2*N+1);
	sort(fy,fy+2*N+1);
	p = 0;
	for (int i=2*N;i>=0;i--)
	{
		while (p < 2*N+1 && fx[i]+fy[p] <= d) p++;
		ans += p;
	}
	cout<<ans;
	return 0;
}

要点提示

  • 整个平面的大小为 ( 1 0 6 + 1 0 6 ) 2 (10^6+10^6)^2 (106+106)2 ,需要开 l o n g l o n g long long longlong

  • 代码中的 Warning 1:计算 f x , f y fx,fy fx,fy 时,统计线左右两边点个数时,注意开始时线左边个数为0,干脆直接从下标为0开始读入。

  • 代码中的 Warning 2:由于会出现负数,所以 f x , f y fx,fy fx,fy 的下标还不能直接对应坐标,需要减去 N N N

  • 会有正负,所以数组大小要开两倍并处理负数。

题目小结

这是一道滑动窗口/双指针好题,写完之后会对滑动窗口/双指针有更深刻和更新的理解。

一些花絮

调这道题的时候,数组开小卡了半个小时 (sad)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值