物理大地测量学笔记(一)

文章目录

0 前言

物理大地测量学PPT过于丑陋,严重危害了本人复习效率,又因网上鲜有人整理该科目的内容,遂作此笔记。笔记不会严格按照书本或PPT的章节划分,主要目的在于串联知识、梳理概念,对于基础的计算会适当掠过,欢迎指正或补充。

1 引力和引力位

1.1 引力

为便于计算,物理大地测量学中所讨论的引力,被吸引质体始终是单位质量。

根据牛顿万有引力定律:
F = G m 1 m 2 l 2 \large F=G\frac{m_1m_2}{l^2} F=Gl2m1m2
m 1 = m , m 2 = 1 m_1=m, m_2=1 m1=m,m2=1 ,得到引力表达式:
F = G m l 2 \large F=G\frac{m}{l^2} F=Gl2m
在直角坐标系下,假设质点m坐标为 ,被吸引点P坐标为 ,容易得到引力在XYZ三个坐标轴上的分量大小:
{ X = − F cos ⁡ α = − G m l 2 x − ξ l = − G m ( x − ξ ) l 3 Y = − F cos ⁡ β = − G m l 2 y − η l = − G m ( y − η ) l 3 Z = − F cos ⁡ γ = − G m l 2 z − ζ l = − G m ( z − ζ ) l 3 \large \left\{ \begin{array}{c}X=-F\cos \alpha =-\frac{Gm}{l^2}\frac{x-\xi}{l}=-\frac{Gm\left( x-\xi \right)}{l^3}\\Y=-F\cos \beta =-\frac{Gm}{l^2}\frac{y-\eta}{l}=-\frac{Gm\left( y-\eta \right)}{l^3}\\Z=-F\cos \gamma =-\frac{Gm}{l^2}\frac{z-\zeta}{l}=-\frac{Gm\left( z-\zeta \right)}{l^3}\\ \end{array} \right. X=Fcosα=l2Gmlxξ=l3Gm(xξ)Y=Fcosβ=l2Gmlyη=l3Gm(yη)Z=Fcosγ=l2Gmlzζ=l3Gm(zζ)
其中:
l = ( x − ξ ) 2 + ( y − η ) 2 + ( z − ζ ) 2 \large l=\sqrt{\left( x-\xi \right) ^2+\left( y-\eta \right) ^2+\left( z-\zeta \right) ^2} l=(xξ)2+(yη)2+(zζ)2
余弦值的计算,可以放到长方体中去看,比较清楚明了:

分量的计算,是为了导出引力位做准备。

1.2 引力位

1.2.1 引力位定义

对于任何的力场都有对应的位场。给出位函数的定义:

设有一个标量函数,它对被吸引点各坐标轴的偏导数等于力在相应坐标轴上的分量。

对于引力,则有引力位:
V = G m l \large V=\frac{Gm}{l} V=lGm
证明该公式,只需要求V在三个方向上的偏导,和上面求得.的分量对比即可,这里省略。

事实上,力位在任意方向上的方向导数都等于力在该方向的投影。

1.2.2 利用引力位计算做功

引力场是保守力场,做功和路径无关,有起始点的位置决定。易得:
A = − ∫ l 1 l 2 G m l 2 d l = G m l 2 − G m l 1 = V 2 − V 1 \large A=-\int_{l_1}^{l_2}{\frac{Gm}{l^2}}dl=\frac{Gm}{l_2}-\frac{Gm}{l_1}=V_2-V_1 A=l1l2l2Gmdl=l2Gml1Gm=V2V1
因此从引力所做的功等于终点引力位减去起点引力位

1.2.3 利用引力位计算位能

位能是将质点移动到选定的零位置时保守力所做的功。由做功计算可得
E = V ∞ − V = 0 − V = − V \large E=V_{\infty}-V=0-V=-V E=VV=0V=V
因此位能和引力位互为相反数

1.3 层、面、质体的引力及其位

考虑到引力位的表达形式最简单,并且引力可以通过对引力位梯度运算求得,因此这里所有的过程都是微元→积分→得到引力位→得到引力。历年卷中会考察密度不均匀质体的引力位计算,基本都是大物的基础,知道基本的思路即可。

1.3.2 质面和质体

闭合表面质量为 m m m,密度为 κ κ κ,面积单元为 d σ dσ dσ,则有
κ = d m d σ \large \kappa =\frac{dm}{d\sigma} κ=dσdm
积分得
V = G ∬ σ d m l = G ∬ σ κ l d σ \large V=G\iint\limits_{\sigma}{\frac{dm}{l}}=G\iint\limits_{\sigma}{\frac{\kappa}{l}}d\sigma V=Gσldm=Gσlκdσ
同样地,对于质体,只需要把密度符号换一下:
V = G ∬ v d m l = G ∬ σ ρ l d v \large V=G\iint\limits_v{\frac{dm}{l}}=G\iint\limits_{\sigma}{\frac{\rho}{l}}dv V=Gvldm=Gσlρdv
接下来讨论一些典型质体:

1.3.3 均质球面

外部

取球面上一个微小的近似矩形,写出其两个边长,得到微分面积dσ
d σ = R d ψ ⋅ R sin ⁡ ψ d λ \large d\sigma =Rd\psi \cdot R\sin \psi d\lambda dσ=RdψRsinψdλ
则球面形成的引力位为
V e = G ∬ σ κ l d σ = G κ ∫ 0 2 π ∫ 0 π R 2 sin ⁡ ψ l d ψ d λ \large V_e=G\iint\limits_{\sigma}{\frac{\kappa}{l}d\sigma}=G\kappa \int_0^{2\pi}{\int_0^{\pi}{\frac{R^2\sin \psi}{l}d\psi d\lambda}} Ve=Gσlκdσ=Gκ02π0πlR2sinψdψdλ
由余弦定理,构建 ψ ψ ψ l l l 的函数关系,从而将 d ψ dψ dψ 转换为 d l dl dl ,便于积分运算:
l 2 = R 2 + r 2 − 2 R r cos ⁡ ψ \large l^2=R^2+r^2-2Rr\cos \psi l2=R2+r22Rrcosψ
两边同时微分:
2 l d l = 2 R r sin ⁡ ψ d ψ \large 2ldl=2Rr\sin \psi d\psi 2ldl=2Rrsinψdψ
代入得:
V e = G κ ∫ 0 2 π ∫ r − R r + R R l r d l d λ = G κ R r ∫ 0 2 π ∫ r − R r + R d l d λ = G κ R r 2 π ⋅ 2 R = G r ⋅ 4 π R 2 κ = G M r \large V_e=G\kappa \int_0^{2\pi}{\int_{r-R}^{r+R}{\frac{R}{lr}dld\lambda}}=G\kappa \frac{R}{r}\int_0^{2\pi}{\int_{r-R}^{r+R}{dld\lambda}} \\ \\ \\ =G\kappa \frac{R}{r}2\pi \cdot 2R=\frac{G}{r}\cdot 4\pi R^2\kappa =G\frac{M}{r} Ve=Gκ02πrRr+RlrRdldλ=GκrR02πrRr+Rdldλ=GκrR2π2R=rG4πR2κ=GrM
则引力大小为:
F e = ∂ V e ∂ r = − G M r 2 \large F_e=\frac{\partial V_e}{\partial r}=-G\frac{M}{r^2} Fe=rVe=Gr2M

内部

几何关系和外部一样,因此只需要改变 d l dl dl 的积分上下限:
V i = G κ R r ∫ 0 2 π ∫ R − r R + r d l d λ = 4 π G κ R = G M R \large V_i=G\kappa \frac{R}{r}\int_0^{2\pi}{\int_{R-r}^{R+r}{dld\lambda}}=4\pi G\kappa R=G\frac{M}{R} Vi=GκrR02πRrR+rdldλ=4πGκR=GRM F i = ∂ V i ∂ r = 0 \large F_i=\frac{\partial V_i}{\partial r}=0 Fi=rVi=0

结论

球面对外部点的引力,等同于将球面质量完全集中在球心的质点;

球面对内部点的引力位为常数,因此引力为0。

1.3.3 均质球壳(有厚度)

将球壳看作无数个球面(面密度σ改为体密度ρ),也就是以球面为单元进行积分,此时变量为R。PPT中将内径设为R1,外径设为R,积分时则用R’,个人觉得看起来十分紊乱,因此改为了R1和R2,对R积分。

分为两种情况:

外部( r > R r>R r>R

和球面面类似,由体积公式,外部引力位同样等同于质量集中在圆心

内部( R 1 < r < R 2 R_1<r<R_2 R1<r<R2

考虑两部分,一部分为R1和r之间的球壳,一部分为r到R2之间的球壳。对于靠外的部分,应用球面内部的引力位公式对R积分;对于靠外的部分,应用上面所求的公式即可。具体过程省略。

1.3.4 平面层

平面层积分较为简单,当然最关键的依然是将当前坐标变量转换dl,会使计算简单很多。

下面直接给出计算过程:
首先依然是考虑微元关系:
d m = κ ⋅ r d α ⋅ d r \large dm=\kappa \cdot rd\alpha \cdot dr \\ dm=κrdαdr
其次建立起dl和坐标变量的关系:
l 2 = r 2 + z 2 ⟺ 2 l d l = 2 r d r ⟺ l d l = r d r \large l^2=r^2+z^2\Longleftrightarrow 2ldl=2rdr\Longleftrightarrow ldl=rdr l2=r2+z22ldl=2rdrldl=rdr
最后积分求解:
V P = G ∬ σ d m l = G ∫ 0 2 π ∫ 0 R κ r r 2 + z 2 d r d α = G ∫ 0 2 π ∫ z R 2 + z 2 κ l l d l d α = 2 π G κ ( R 2 + z 2 − z ) \large V_P=G\iint\limits_{\sigma}{\frac{dm}{l}}=G\int_0^{2\pi}{\int_0^R{\frac{\kappa r}{\sqrt{r^2+z^2}}}}drd\alpha \\ =G\int_0^{2\pi}{\int_z^{\sqrt{R^2+z^2}}{\frac{\kappa l}{l}}}dld\alpha =2\pi G\kappa \left( \sqrt{R^2+z^2}-z \right) VP=Gσldm=G02π0Rr2+z2 κrdrdα=G02πzR2+z2 lκldldα=2πGκ(R2+z2 z)

这里比较典型的一点是,尽管位函数显然是处处连续的,但在平面层的上下交界处,其导数不连续(力的方向大小相等,方向相反),因此引力场可能不连续。严格证明则可以通过求极限,这里不再展开。

2 引力位的性质

这部分内容比较重要,因此单独拎出来。

1 引力位对任意方向h的导数等于引力在该方向上的分量

2 引力位与位能的数值相同,符号相反

前面已经证明过,掌握定义即可直接推导

3 引力的方向与引力位水准面(等位面)的法向重合。同一簇等位面之间既不平行又不相交和相切

可通过性质1简单证明,即夹角为0°和90°两种情况,得到一个为0,一个为最大值(也就是引力)。

4 引力位是一个在无穷远处的正则函数,满足下列等式:

在这里插入图片描述

证明的方法如出一辙,将引力位基本公式:
V = ∭ v G d m l V=\iiint\limits_v{G\frac{dm}{l}} V=vGldm
代入每个式子,简单求极限即可。

5 质体引力为在吸引质量外部满足Laplace方程:

证明也很容易,首先对 求三次二阶导,证明其调和性:
∂ 2 ∂ x 2 ( 1 l ) = − 1 l 3 + 3 ( x − ξ ) 2 l 5 ⟹ Δ ( 1 l ) = − 3 l 3 + 3 l 2 l 5 = 0 \frac{\partial ^2}{\partial x^2}\left( \frac{1}{l} \right) =-\frac{1}{l^3}+\frac{3\left( x-\xi \right) ^2}{l^5}\Longrightarrow \varDelta \left( \frac{1}{l} \right) =-\frac{3}{l^3}+\frac{3l^2}{l^5}=0 x22(l1)=l31+l53(xξ)2Δ(l1)=l33+l53l2=0
应用引力位基本公式,由于其它量和xyz都无关,因此Laplace算子可以直接放入积分内部:
Δ V = Δ ( G ∭ v d m l ) = G ∭ v Δ ( 1 l ) d m = 0 \varDelta V=\varDelta \left( G\iiint\limits_v{\frac{dm}{l}} \right) =G\iiint\limits_v{\varDelta \left( \frac{1}{l} \right) dm}=0 ΔV=ΔGvldm=GvΔ(l1)dm=0

6 质体引力位在质体内部满足Poisson方程

证明思路:

在质体内任取一点,并以该点为圆心取任意半径的球体(球体完全在该质体内部),此时有两部分引力位。对于球体以外的部分,其 Δ V \Delta V ΔV沿用性质5,显然等于0;对于球体部分产生的引力位,套用之前球层的引力位公式:
V 1 = 2 3 π G ρ ( 3 R 2 − r 2 ) V_1=\frac{2}{3}\pi G\rho \left( 3R^2-r^2 \right) V1=32πGρ(3R2r2)
容易得到:
Δ V 1 = − 4 π G ρ \varDelta V_1=-4\pi G\rho ΔV1=4πGρ

2.7 质体引力位的二阶导数在密度发生突变时是不连续的

这一点可以直接参照Poisson方程,其二阶导和密度ρ线性相关,因此密度不连续时,二阶导也不连续。任意举一个例子都能得出这个结论。

3 球谐函数

球谐函数是最重要的谐函数。在书上并没有对其概念和用处做详细的介绍,导致很长一段时间都非常困惑于此。

这里可以简单将球谐函数理解为类似于傅里叶变换的展开式,同样它所使用的也是一组正交基底。球谐函数是在球面坐标系中进行的,相对应的,如果去掉半径量,就得到面谐函数

在物理大地测量学中,球谐函数的主要作用就是将谐函数展开成级数形式,便于编程计算。什么是谐函数?满足Laplace方程的就是谐函数——因此球谐函数可以用来表达地球引力位。有了引力位,其它重力场参数如大地水准面高、重力扰动、重力异常也就水到渠成。

3.1 Laplace方程的球坐标形式

通过球坐标和直角坐标的关系,求二阶导数,当然可以将Laplace方程的直角形式转换为球坐标形式。但实际上任何正交坐标都有通用的转换方式,只需要建立两坐标系的数学关系,求得新坐标系的拉梅系数hi,即可得到其Laplace方程表达式。

3.1.1 正交坐标系

怎样确定一个坐标系是否正交?书上给出的方法是计算ds,也就是微分弧段的长度。

在直角坐标系中:
d s 2 = d x 2 + d y 2 + d z 2 ds^2=dx^2+dy^2+dz^2 ds2=dx2+dy2+dz2
根据球坐标和直角坐标转换关系:
{ x = r sin ⁡ θ cos ⁡ λ y = r sin ⁡ θ sin ⁡ λ z = r cos ⁡ θ \left\{ \begin{array}{c} x=r\sin \theta \cos \lambda\\ y=r\sin \theta \sin \lambda\\ z=r\cos \theta\\ \end{array} \right. x=rsinθcosλy=rsinθsinλz=rcosθ
得到在球坐标系下ds的表达式:
d s 2 = d r 2 + r 2 d θ 2 + r 2 sin ⁡ 2 θ d λ 2 ds^2=dr^2+r^2d\theta ^2+r^2\sin ^2\theta d\lambda ^2 ds2=dr2+r2dθ2+r2sin2θdλ2
其中不包含drdθ等交叉项,说明了求坐标的正交性。

实际上,在正交坐标系 中,如果将单元弧段的形式表示为:
d s 2 = h 1 2 d q 1 2 + h 2 2 d q 2 2 + h 3 2 d q 3 2 ds^2=h_{1}^{2}dq_{1}^{2}+h_{2}^{2}dq_{2}^{2}+h_{3}^{2}dq_{3}^{2} ds2=h12dq12+h22dq22+h32dq32
其中hi称为拉梅系数

则可以证明得到其Laplace方程表达形式为:
Δ V = 1 h 1 h 2 h 3 [ ∂ ∂ q 1 ( h 2 h 3 h 1 ∂ V ∂ q 1 ) + ∂ ∂ q 2 ( h 1 h 3 h 2 ∂ V ∂ q 2 ) + ∂ ∂ q 3 ( h 1 h 2 h 3 ∂ V ∂ q 3 ) ] \varDelta V=\frac{1}{h_1h_2h_3}\left[ \frac{\partial}{\partial q_1}\left( \frac{h_2h_3}{h_1}\frac{\partial V}{\partial q_1} \right) +\frac{\partial}{\partial q_2}\left( \frac{h_1h_3}{h_2}\frac{\partial V}{\partial q_2} \right) +\frac{\partial}{\partial q_3}\left( \frac{h_1h_2}{h_3}\frac{\partial V}{\partial q_3} \right) \right] ΔV=h1h2h31[q1(h1h2h3q1V)+q2(h2h1h3q2V)+q3(h3h1h2q3V)]

3.1.2 球坐标系下的Laplace方程

对于一切的正交坐标系,只需要分别求出 h 1 , h 2 , h 3 h_1, h_2, h_3 h1,h2,h3,代入上式即可得到该坐标系下的Laplace方程式。下面省略推导过程,给出球坐标系下的方程形式:
Δ V ≡ ∂ 2 V ∂ r 2 + 2 r ∂ V ∂ r + 1 r 2 ∂ 2 V ∂ ϑ 2 + cot ⁡ ϑ r 2 ∂ V ∂ ϑ + 1 r 2 sin ⁡ 2 ϑ ∂ 2 V ∂ λ 2 = 0 \Delta V \equiv \frac{\partial^{2} V}{\partial r^{2}}+\frac{2}{r} \frac{\partial V}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \vartheta^{2}}+\frac{\cot \vartheta}{r^{2}} \frac{\partial V}{\partial \vartheta}+\frac{1}{r^{2} \sin ^{2} \vartheta} \frac{\partial^{2} V}{\partial \lambda^{2}}=0 ΔVr22V+r2rV+r21ϑ22V+r2cotϑϑV+r2sin2ϑ1λ22V=0
或两边同乘r的平方:
r 2 ∂ 2 V ∂ r 2 + 2 r ∂ V ∂ r + ∂ 2 V ∂ θ 2 + cot ⁡ θ ∂ V ∂ θ + 1 sin ⁡ 2 θ ∂ 2 V ∂ λ 2 = 0 r^2\frac{\partial ^2V}{\partial r^2}+2r\frac{\partial V}{\partial r}+\frac{\partial ^2V}{\partial \theta ^2}+\cot \theta \frac{\partial V}{\partial \theta}+\frac{1}{\sin ^2\theta}\frac{\partial ^2V}{\partial \lambda ^2}=0 r2r22V+2rrV+θ22V+cotθθV+sin2θ1λ22V=0

3.2 球谐函数的导出

在导出球谐函数的过程中,最核心的方法是分离变量法。将V(r,θ,λ) 转换为三个特征函数相乘的形式,分别对应三个变量。即V(r,θ,λ) =f®×g(θ)×h(λ)。 需要掌握三种特征函数的形式,以及球谐函数的形式,球面内外的区别(根据其收敛性)。

3.2.1 第一次分离变量( f ( r ) f(r) f(r)

分离变量:
V ( r , θ , λ ) = f ( r ) Y ( θ , λ ) V\left( r,\theta ,\lambda \right) =f\left( r \right) Y\left( \theta ,\lambda \right) V(r,θ,λ)=f(r)Y(θ,λ)
代入Laplace方程得:
1 f ( r 2 f ′ ′ + 2 r f ′ ) = − 1 Y ( ∂ 2 Y ∂ θ 2 + cot ⁡ θ ∂ Y ∂ θ + 1 sin ⁡ 2 θ ∂ 2 Y ∂ 2 λ ) \frac{1}{f}\left( r^2f''+2rf' \right) =-\frac{1}{Y}\left( \frac{\partial ^2Y}{\partial \theta ^2}+\cot \theta \frac{\partial Y}{\partial \theta}+\frac{1}{\sin ^2\theta}\frac{\partial ^2Y}{\partial ^2\lambda} \right) f1(r2f+2rf)=Y1(θ22Y+cotθθY+sin2θ12λ2Y)
由于左右两边变量互不相关,但又要保持等式成立,因此两边都是常数。该常数也叫做本征值。将其表示为 n(n+1) ,则有:
( r 2 f ′ ′ + 2 r f ′ ) − n ( n + 1 ) f = 0 \left( r^2f''+2rf' \right) -n\left( n+1 \right) f=0 (r2f+2rf)n(n+1)f=0
解得关于r的特征函数(两个解):
{ f ( r ) = r n f ( r ) = 1 r n + 1 \left\{ \begin{array}{c} f\left( r \right) =r^n\\ f\left( r \right) =\frac{1}{r^{n+1}}\\ \end{array} \right. {f(r)=rnf(r)=rn+11
在这里当n为一个常数时,其实对应了微分方程的一个特解。而取n=0,1,2一直到正无穷,乘以一个系数并求和,才能得到通解:
{ f ( r ) = ∑ n = 0 ∞ c n r n f ( r ) = ∑ n = 0 ∞ d n r − ( n + 1 ) \left\{ \begin{array}{c} f\left( r \right) =\sum_{n=0}^{\infty}{c_nr^n}\\ \\f\left( r \right) =\sum_{n=0}^{\infty}{d_nr^{-\left( n+1 \right)}}\\ \end{array} \right. f(r)=n=0cnrnf(r)=n=0dnr(n+1)

3.2.2 第二次分离变量(面谐函数)

将面谐函数继续分离变量
Y ( θ , λ ) = g ( θ ) h ( λ ) Y\left( \theta ,\lambda \right) =g\left( \theta \right) h\left( \lambda \right) Y(θ,λ)=g(θ)h(λ)代入之前的式子得:
sin ⁡ θ g ( sin ⁡ θ g ′ ′ + cos ⁡ θ g ′ + n ( n + 1 ) sin ⁡ θ g ) = − h ′ ′ h \frac{\sin \theta}{g}\left( \sin \theta g''+\cos \theta g'+n\left( n+1 \right) \sin \theta g \right) =-\frac{h''}{h} gsinθ(sinθg+cosθg+n(n+1)sinθg)=hh
与之前同理,两边都为常数,将此常数设为m的平方,则有微分方程组:
{ h ′ ′ + m 2 h = 0 sin ⁡ θ ( sin ⁡ θ g ′ ′ + cos ⁡ θ g ′ + n ( n + 1 ) sin ⁡ θ g ) − m 2 g = 0 \left\{ \begin{array}{c} h''+m^2h=0\\ \sin \theta \left( \sin \theta g''+\cos \theta g'+n\left( n+1 \right) \sin \theta g \right) -m^2g=0\\ \end{array} \right. {h+m2h=0sinθ(sinθg+cosθg+n(n+1)sinθg)m2g=0
解得h(这个我会! ):
{ h ( λ ) = cos ⁡ m λ h ( λ ) = sin ⁡ m λ \left\{ \begin{array}{c} h\left( \lambda \right) =\cos m\lambda\\ h\left( \lambda \right) =\sin m\lambda\\ \end{array} \right. {h(λ)=cosmλh(λ)=sinmλ
至于g,它的解也就是勒让德级数,该方程称为勒让德微分方程。表示为:
g ( θ ) = P n m ( cos ⁡ θ ) g\left( \theta \right) =P_{nm}\left( \cos \theta \right) g(θ)=Pnm(cosθ)

书上还有有这么一句话:

可以证明,只有当n和m为整数0,1,2…且m≤n时,才有物理意义上的解

先不管它怎么证明的,这一句话实际上解释了为何前面令n和m为整数——大概是和勒让德函数的求解以及背后的物理原理有一定的联系…(实在是太高深,我已经尽力了/(ㄒoㄒ)/~~)

3.2.3 球谐函数表达式

由上面推导,可以得到面球谐函数的表达式:
{ Y ( θ , λ ) = P n m ( cos ⁡ θ ) cos ⁡ m λ Y ( θ , λ ) = P n m ( cos ⁡ θ ) sin ⁡ m λ \left\{ \begin{array}{c} Y\left( \theta ,\lambda \right) =P_{nm}\left( \cos \theta \right) \cos m\lambda\\ Y\left( \theta ,\lambda \right) =P_{nm}\left( \cos \theta \right) \sin m\lambda\\ \end{array} \right. {Y(θ,λ)=Pnm(cosθ)cosmλY(θ,λ)=Pnm(cosθ)sinmλ
对于通解,则表示为线性组合:
Y ( θ , λ ) = ∑ m = 0 n [ a n m P n m ( cos ⁡ θ ) cos ⁡ m λ + b n m P n m ( cos ⁡ θ ) sin ⁡ m λ ] Y\left( \theta ,\lambda \right) =\sum_{m=0}^n{\left[ a_{nm}P_{nm}\left( \cos \theta \right) \cos m\lambda +b_{nm}P_{nm}\left( \cos \theta \right) \sin m\lambda \right]} Y(θ,λ)=m=0n[anmPnm(cosθ)cosmλ+bnmPnm(cosθ)sinmλ]
进而给出球谐函数表达式:
{ V ( r , θ , λ ) = ∑ n = 0 ∞ r n ∑ m = 0 n [ a n m P n m ( cos ⁡ θ ) cos ⁡ m λ + b n m P n m ( cos ⁡ θ ) sin ⁡ m λ ] V ( r , θ , λ ) = ∑ n = 0 ∞ 1 r n + 1 ∑ m = 0 n [ a n m P n m ( cos ⁡ θ ) cos ⁡ m λ + b n m P n m ( cos ⁡ θ ) sin ⁡ m λ ] \left\{ \begin{array}{c} V\left( r,\theta ,\lambda \right) =\sum_{n=0}^{\infty}{r^n\sum_{m=0}^n{\left[ a_{nm}P_{nm}\left( \cos \theta \right) \cos m\lambda +b_{nm}P_{nm}\left( \cos \theta \right) \sin m\lambda \right]}}\\ \\V\left( r,\theta ,\lambda \right) =\sum_{n=0}^{\infty}{\frac{1}{r^{n+1}}\sum_{m=0}^n{\left[ a_{nm}P_{nm}\left( \cos \theta \right) \cos m\lambda +b_{nm}P_{nm}\left( \cos \theta \right) \sin m\lambda \right]}}\\ \end{array} \right. V(r,θ,λ)=n=0rnm=0n[anmPnm(cosθ)cosmλ+bnmPnm(cosθ)sinmλ]V(r,θ,λ)=n=0rn+11m=0n[anmPnm(cosθ)cosmλ+bnmPnm(cosθ)sinmλ]
其中我们主要关注球面以外的部分,并且考虑到函数的正则性,舍去r^n的形式而采用第二种

上面的计算过程看起来似乎还算连贯,但其实还存在很多疑点,例如为什么球谐函数可以分离变量,为什么本征值可以这样表示,为什么这样的通解一定能满足所有情况…后来问了数院的同学,也没有搞懂,只好作罢。

接下来对勒让德函数展开讨论。

3.3 勒让德函数

勒让德函数是勒让德微分方程的一个解,等同于g(θ)。

3.3.1 表达式


{ t = cos ⁡ θ g ( θ ) = g ‾ ( t ) = P n m ( t ) \large \left\{ \begin{array}{c} t=\cos \theta\\ g\left( \theta \right) =\overline{g}\left( t \right) =P_{nm}\left( t \right)\\ \end{array} \right. {t=cosθg(θ)=g(t)=Pnm(t)
代入微分方程得:
P n m ( t ) = 1 2 n n ! ( 1 − t 2 ) m 2 d n + m d t n + m ( t 2 − 1 ) n \large P_{nm}\left( t \right) =\frac{1}{2^nn!}\left( 1-t^2 \right) ^{\frac{m}{2}}\frac{d^{n+m}}{dt^{n+m}}\left( t^2-1 \right) ^n Pnm(t)=2nn!1(1t2)2mdtn+mdn+m(t21)n
准确地说该表达式是缔和勒让德函数。令m=0,则得到勒让德函数。

显式表达则需要将$(t2-1)n $展开,用阶乘来表达。
P n m ( t ) = 1 2 n ( 1 − t 2 ) m 2 ∑ k = 0 r ( − 1 ) k ( 2 n − 2 k ) ! k ! ( n − k ) ! ( n − m − 2 k ) ! t n − m − 2 k P_{nm}\left( t \right) =\frac{1}{2^n}\left( 1-t^2 \right) ^{\frac{m}{2}}\sum_{k=0}^r{\left( -1 \right) ^k\frac{\left( 2n-2k \right) !}{k!\left( n-k \right) !\left( n-m-2k \right) !}t^{n-m-2k}} Pnm(t)=2n1(1t2)2mk=0r(1)kk!(nk)!(nm2k)!(2n2k)!tnm2k其中阶乘数必须为正:
r = [ n − m 2 ] r=\left[ \frac{n-m}{2} \right] r=[2nm]
(之前还把求导过程推过一遍,但是笔记丢失了…懒得再打一遍,反正就是那么回事)

3.3.2 正交性

(缔和)勒让德函数具有正交性

m=0的情况——即勒让德函数——为例,其正交性表示为:
{ ∫ − 1 1 P n ( x ) P m ( x ) d x = 2 2 n + 1 δ m n δ m n = { 1 , m = n 0 , m ≠ n \left\{ \begin{array}{c} \int\limits_{-1}^1{P_n\left( x \right) P_m\left( x \right) dx}=\frac{2}{2n+1}\delta _{mn}\\ \\ \delta _{mn}=\left\{ \begin{array}{c} 1, m=n\\ 0, m\ne n\\ \end{array} \right.\\ \end{array} \right. 11Pn(x)Pm(x)dx=2n+12δmnδmn={1,m=n0,m=n
假设一元函数y(x)可以展开成勒让德级数:
y ( x ) = ∑ n = 0 ∞ c n P n ( x ) y\left( x \right) =\sum_{n=0}^{\infty}{c_nP_n\left( x \right)} y(x)=n=0cnPn(x)
利用正交性求系数:
y ( x ) P k ( x ) = ∑ n = 0 ∞ c n P n ( x ) P k ( x ) ⇒ ∫ − 1 1 y ( x ) P k ( x ) d x = ∑ n = 0 ∞ ( ∫ − 1 1 c n P n ( x ) P k ( x ) d x ) ⇒ ∫ − 1 1 y ( x ) P k ( x ) d x = c k ∫ − 1 1 P k 2 ( x ) d x = 2 2 k + 1 c k ⇒ c k = 2 k + 1 2 ∫ − 1 1 y ( x ) P k ( x ) d x y\left( x \right) P_k\left( x \right) =\sum_{n=0}^{\infty}{c_nP_n\left( x \right) P_k\left( x \right)} \\ \\ \Rightarrow \int\limits_{-1}^1{y\left( x \right) P_k\left( x \right) dx}=\sum_{n=0}^{\infty}{\left( \int\limits_{-1}^1{c_nP_n\left( x \right) P_k\left( x \right) dx} \right)} \\ \\ \\ \Rightarrow \int\limits_{-1}^1{y\left( x \right) P_k\left( x \right) dx}=c_k\int\limits_{-1}^1{P_{k}^{2}\left( x \right) dx}=\frac{2}{2k+1}c_k \\ \\ \\\Rightarrow c_k=\frac{2k+1}{2}\int\limits_{-1}^1{y\left( x \right) P_k\left( x \right) dx} y(x)Pk(x)=n=0cnPn(x)Pk(x)11y(x)Pk(x)dx=n=011cnPn(x)Pk(x)dx11y(x)Pk(x)dx=ck11Pk2(x)dx=2k+12ckck=22k+111y(x)Pk(x)dx

3.3.3 递推方法

从勒让德函数的显式表达可以看出,其阶乘的次数非常高,如果直接计算会相当费时,这也体现了递推的必要性。递推计算也是课程的第一次编程作业。

递推方法主要包括标准向前列、标准向前行、跨阶次、Belikov递推法。其中跨阶次递推精度最高,适用范围最广,是最好的递推方法。

具体的实验内容和源代码可以查看我发布的免费资源。这里就简单放一些我的实验报告截图:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.4 面球谐函数

3.4.1 分类

根据m和n的大小关系,将面球谐函数分为以下几种:

带谐函数( m = 0 m=0 m=0)
田谐函数( m < n m<n m<n)
扇谐函数( m = n m=n m=n

以n=3为例,从左往右m=0,1,2,3。谐函数将球面划分成正负交替的区域。

可以看到带谐函数是横向划分球体,而田谐函数将球面划分成格子状,带谐函数则竖向划分

3.4.2 正交性

将面球谐函数记作如下形式:
{ R n m ( θ , λ ) = P n m ( cos ⁡ θ ) cos ⁡ m λ S n m ( θ , λ ) = P n m ( cos ⁡ θ ) sin ⁡ m λ \left\{ \begin{array}{c} R_{nm}\left( \theta ,\lambda \right) =P_{nm}\left( \cos \theta \right) \cos m\lambda\\ \\S_{nm}\left( \theta ,\lambda \right) =P_{nm}\left( \cos \theta \right) \sin m\lambda\\ \end{array} \right. Rnm(θ,λ)=Pnm(cosθ)cosmλSnm(θ,λ)=Pnm(cosθ)sinmλ
则有:

1. 单位球面上,任何两个不同的面球谐函数乘积的积分为0

{ ∬ σ R n m ( θ , λ ) R s r ( θ , λ ) d σ = 0 ∬ σ S n m ( θ , λ ) S s r ( θ , λ ) d σ = 0 } ( m , n ) ≠ ( s , r ) ∬ σ R n m ( θ , λ ) S s r ( θ , λ ) d σ = 0            i n    a n y    c a s e    \left\{ \begin{array}{c} \left. \begin{array}{c} \iint\limits_{\sigma}{R_{nm}\left( \theta ,\lambda \right) R_{sr}\left( \theta ,\lambda \right)}d\sigma =0\\ \iint\limits_{\sigma}{S_{nm}\left( \theta ,\lambda \right) S_{sr}\left( \theta ,\lambda \right)}d\sigma =0\\ \end{array} \right\} \left( m,n \right) \ne \left( s,r \right)\\ \\ \iint\limits_{\sigma}{R_{nm}\left( \theta ,\lambda \right) S_{sr}\left( \theta ,\lambda \right)}d\sigma =0 \,\,\,\,\,\,\,\,\,\, in\,\,any\,\,case\,\, \end{array} \right. σRnm(θ,λ)Rsr(θ,λ)dσ=0σSnm(θ,λ)Ssr(θ,λ)dσ=0(m,n)=(s,r)σRnm(θ,λ)Ssr(θ,λ)dσ=0inanycase

2. 单位球面上,两个相同的面球谐函数乘积的积分为:

∬ σ R n m ( θ , λ ) R n m ( θ , λ ) d σ = ∬ σ S n m ( θ , λ ) S n m ( θ , λ ) d σ = { 2 π 2 n + 1 ( n + m ) ! ( n − m ) !    , m ≠ 0 4 π 2 n + 1    , m = 0 \iint\limits_{\sigma}{R_{nm}\left( \theta ,\lambda \right) R_{nm}\left( \theta ,\lambda \right)}d\sigma =\iint\limits_{\sigma}{S_{nm}\left( \theta ,\lambda \right) S_{nm}\left( \theta ,\lambda \right)}d\sigma =\left\{ \begin{array}{c} \frac{2\pi}{2n+1}\frac{\left( n+m \right) !}{\left( n-m \right) !}\,\, ,m\ne 0\\\\ \frac{4\pi}{2n+1}\,\, ,m=0\\ \end{array} \right. σRnm(θ,λ)Rnm(θ,λ)dσ=σSnm(θ,λ)Snm(θ,λ)dσ=2n+12π(nm)!(n+m)!,m=02n+14π,m=0

3.4.3 完全正规化球谐函数

完全正规化,实际上就是让相同的面球谐函数乘积的积分为4π,也就是在球面上均值为1

因此其改正其实就是上面公式的逆推,使得其积分为4π(包括m=0时)。

正规化的好处在于统一了m=0和m≠0的情况
R ‾ n m ( θ , λ ) = { 2 ( 2 n + 1 ) ( n − m ) ! ( n + m ) ! R n m ( θ , λ )    , m ≠ 0 2 n + 1 R n m ( θ , λ )    , m = 0 \overline{R}_{nm}\left( \theta ,\lambda \right) =\left\{ \begin{array}{c} \sqrt{2\left( 2n+1 \right) \frac{\left( n-m \right) !}{\left( n+m \right) !}}R_{nm}\left( \theta ,\lambda \right) \,\,, m\ne 0\\ \\ \sqrt{2n+1}R_{nm}\left( \theta ,\lambda \right) \,\,, m=0\\ \end{array} \right. Rnm(θ,λ)=2(2n+1)(n+m)!(nm)! Rnm(θ,λ),m=02n+1 Rnm(θ,λ),m=0

3.5 距离倒数的展开式

距离倒数的展开式是引力场展开为球谐函数的基本公式。这一部分书上和PPT其实都省去了很多重要的计算过程,暂时没有时间去深究,这里结合PPT和书梳理几个基本公式的关系。

首先利用球坐标表示两点:
P ( r , θ , λ ) , P ′ ( r ′ , θ ′ , λ ) P\left( r,\theta ,\lambda \right) , P'\left( r',\theta ',\lambda \right) P(r,θ,λ),P(r,θ,λ)设两点与原点连线的夹角为ψ,如图所示:

余弦定理
l 2 = r 2 + r ′ 2 − 2 r r ′ cos ⁡ ψ l^2=r^2+r'^2-2rr'\cos \psi l2=r2+r22rrcosψ又因为ψ是两个矢量夹角,可以通过转换到直角坐标系后,计算矢量乘积得到其余弦值
r θ λ : ( 1 , θ , λ ) , ( 1 , θ ′ , λ ′ ) ⇒ x y z : ( sin ⁡ θ cos ⁡ λ , sin ⁡ θ sin ⁡ λ , cos ⁡ θ ) , ( sin ⁡ θ ′ cos ⁡ λ ′ , sin ⁡ θ ′ sin ⁡ λ ′ , cos ⁡ θ ′ ) ⇒ cos ⁡ ψ = sin ⁡ θ cos ⁡ λ ⋅ sin ⁡ θ ′ cos ⁡ λ ′ + sin ⁡ θ sin ⁡ λ ⋅ sin ⁡ θ ′ sin ⁡ λ ′ + cos ⁡ θ cos ⁡ θ ′ 1 ⋅ 1 = sin ⁡ θ sin ⁡ θ ′ ( cos ⁡ λ cos ⁡ λ ′ + sin ⁡ λ sin ⁡ λ ′ ) + cos ⁡ θ cos ⁡ θ ′ = sin ⁡ θ sin ⁡ θ ′ cos ⁡ ( λ − λ ′ ) + cos ⁡ θ cos ⁡ θ ′ r\theta \lambda : \left( 1,\theta ,\lambda \right) , \left( 1,\theta ',\lambda ' \right) \\ \Rightarrow xyz: \left( \sin \theta \cos \lambda ,\sin \theta \sin \lambda ,\cos \theta \right) , \left( \sin \theta '\cos \lambda ',\sin \theta '\sin \lambda ',\cos \theta ' \right) \\ \\ \Rightarrow \cos \psi =\frac{\sin \theta \cos \lambda \cdot \sin \theta '\cos \lambda '+\sin \theta \sin \lambda \cdot \sin \theta '\sin \lambda '+\cos \theta \cos \theta '}{1\cdot 1} \\ \\ =\sin \theta \sin \theta '\left( \cos \lambda \cos \lambda '+\sin \lambda \sin \lambda ' \right) +\cos \theta \cos \theta ' \\ =\sin \theta \sin \theta '\cos \left( \lambda -\lambda ' \right) +\cos \theta \cos \theta ' rθλ:(1,θ,λ),(1,θ,λ)xyz:(sinθcosλ,sinθsinλ,cosθ),(sinθcosλ,sinθsinλ,cosθ)cosψ=11sinθcosλsinθcosλ+sinθsinλsinθsinλ+cosθcosθ=sinθsinθ(cosλcosλ+sinλsinλ)+cosθcosθ=sinθsinθcos(λλ)+cosθcosθ
这里直接给出分解公式
P n ( cos ⁡ ψ ) = P n ( cos ⁡ θ ) P n ( cos ⁡ θ ′ ) + 2 ∑ m = 1 n ( n − m ) ! ( n + m ) ! [ R n m ( θ , λ ) R n m ( θ ′ , λ ′ ) + S n m ( θ , λ ) S n m ( θ ′ , λ ′ ) ] P_{n}\left( \cos \psi \right) \\ =P_{n}\left( \cos \theta \right) P_{n}\left( \cos \theta ' \right) +2\sum_{m=1}^n{\frac{\left( n-m \right) !}{\left( n+m \right) !}\left[ R_{nm}\left( \theta ,\lambda \right) R_{nm}\left( \theta ',\lambda ' \right) +S_{nm}\left( \theta ,\lambda \right) S_{nm}\left( \theta ',\lambda ' \right) \right]} Pn(cosψ)=Pn(cosθ)Pn(cosθ)+2m=1n(n+m)!(nm)![Rnm(θ,λ)Rnm(θ,λ)+Snm(θ,λ)Snm(θ,λ)]
若使用完全正规化谐函数,则有:
P n ( cos ⁡ ψ ) = 1 2 n + 1 ∑ m = 1 n [ R ‾ n m ( θ , λ ) R ‾ n m ( θ ′ , λ ′ ) + S ‾ n m ( θ , λ ) S ‾ n m ( θ ′ , λ ′ ) ] P_{n}\left( \cos \psi \right) =\frac{1}{2n+1}\sum_{m=1}^n{\left[ \overline{R}_{nm}\left( \theta ,\lambda \right) \overline{R}_{nm}\left( \theta ',\lambda ' \right) +\overline{S}_{nm}\left( \theta ,\lambda \right) \overline{S}_{nm}\left( \theta ',\lambda ' \right) \right]} Pn(cosψ)=2n+11m=1n[Rnm(θ,λ)Rnm(θ,λ)+Snm(θ,λ)Snm(θ,λ)]
对距离倒数进行展开:
1 l = ∑ n = 0 ∞ r ′ n r n + 1 P n ( cos ⁡ ψ ) \frac{1}{l}=\sum_{n=0}^{\infty}{\frac{r'^n}{r^{n+1}}P_n\left( \cos \psi \right)} l1=n=0rn+1rnPn(cosψ)
这个公式的形式很容易理解,因为 r , r ′ , l r,r',l rrl 三个数相近,采用这样的形式可以使得左右数量级一致

将分解公式代入得到完整展开式
1 l = ∑ n = 0 ∞ r ′ n r n + 1 1 2 n + 1 ∑ m = 1 n [ R ‾ n m ( θ , λ ) R ‾ n m ( θ ′ , λ ′ ) + S ‾ n m ( θ , λ ) S ‾ n m ( θ ′ , λ ′ ) ] \frac{1}{l}=\sum_{n=0}^{\infty}{\frac{r'^n}{r^{n+1}}\frac{1}{2n+1}\sum_{m=1}^n{\left[ \overline{R}_{nm}\left( \theta ,\lambda \right) \overline{R}_{nm}\left( \theta ',\lambda ' \right) +\overline{S}_{nm}\left( \theta ,\lambda \right) \overline{S}_{nm}\left( \theta ',\lambda ' \right) \right]}} l1=n=0rn+1rn2n+11m=1n[Rnm(θ,λ)Rnm(θ,λ)+Snm(θ,λ)Snm(θ,λ)]
这一函数被称为母函数

  • 19
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值