物理大地测量学笔记(二)

文章目录

4 边值问题

边值问题,即在边界面上已知某些函数值,且函数值满足一定条件,据此来求的外部或内部的调和、并且在无穷远处正则的函数。

根据给定的边值条件不同,分为三种边值问题:

  • 第一边值问题:Dirichlet问题——已知边界面上引力位 V V V
  • 第二边值问题:Neumann问题——已知边界面上引力位的法向导数 ∂ V ∂ n \frac{\partial V}{\partial n} nV
  • 第三边值问题:Robin问题——已知边界面上引力位法向导数和引力位的线性组合 h V + h ∂ V ∂ n hV+h\frac{\partial V}{\partial n} hV+hnV

4.1 格林公式求解边值问题

4.1.1 格林公式

内部第一格林公式

D ( U , V ) D(U,V) D(U,V)为:
D ( U , V ) = ∂ U ∂ x ∂ V ∂ x + ∂ U ∂ y ∂ V ∂ y + ∂ U ∂ z ∂ V ∂ z D(U,V)= \frac{\partial U}{\partial x}\frac{\partial V}{\partial x} +\frac{\partial U}{\partial y}\frac{\partial V}{\partial y}+\frac{\partial U}{\partial z}\frac{\partial V}{\partial z} D(U,V)=xUxV+yUyV+zUzV
则内部第一格林公式表示为:
∭ v U Δ V d v + ∭ v D ( U , V ) d v = ∬ s U ∂ V ∂ n d S \iiint\limits_{v}{U\Delta Vdv}+\iiint\limits_{v}{D(U,V)dv}=\iint\limits_{s}U\frac{\partial V}{\partial n}dS vUΔVdv+vD(U,V)dv=sUnVdS

内部第二格林公式

将内部第一格林公式中的 U , V U,V U,V 互换:
∭ v V Δ U d v + ∭ v ( ∂ U ∂ x ∂ V ∂ x + ∂ U ∂ y ∂ V ∂ y + ∂ U ∂ z ∂ V ∂ z ) d v = ∬ s V ∂ U ∂ n d S \iiint\limits_{v}{V\Delta Udv}+\iiint\limits_{v}{\left( \frac{\partial U}{\partial x}\frac{\partial V}{\partial x} +\frac{\partial U}{\partial y}\frac{\partial V}{\partial y}+\frac{\partial U}{\partial z}\frac{\partial V}{\partial z}\right)dv}=\iint\limits_{s}V\frac{\partial U}{\partial n}dS vVΔUdv+v(xUxV+yUyV+zUzV)dv=sVnUdS
和第一恒等式相减:
∭ v ( U Δ V − V Δ U ) d v = ∬ s ( U ∂ V ∂ n − V ∂ U ∂ n ) d S \iiint\limits_{v}{\left(U\Delta V-V\Delta U\right)dv}=\iint\limits_{s}{\left(U\frac{\partial V}{\partial n}-V\frac{\partial U}{\partial n} \right)dS} v(UΔVVΔU)dv=s(UnVVnU)dS
即得到内部第二格林公式

外部第一格林公式

在外部时,为了使得 n n n 仍然为向外的法线,需要将 ∂ ∂ n \frac{\partial}{\partial n} n 的符号反号,即得到:
∭ v U Δ V d v + ∭ v D ( U , V ) d v = − ∬ s U ∂ V ∂ n d S \iiint\limits_{v}{U\Delta Vdv}+\iiint\limits_{v}{D(U,V)dv}=-\iint\limits_{s}U\frac{\partial V}{\partial n}dS vUΔVdv+vD(U,V)dv=sUnVdS

外部第二格林公式

同理得:
∭ v ( U Δ V − V Δ U ) d v = − ∬ s ( U ∂ V ∂ n − V ∂ U ∂ n ) d S \iiint\limits_{v}{\left(U\Delta V-V\Delta U\right)dv}=-\iint\limits_{s}{\left(U\frac{\partial V}{\partial n}-V\frac{\partial U}{\partial n} \right)dS} v(UΔVVΔU)dv=s(UnVVnU)dS

4.1.2 格林公式的应用

4.1.2.1 计算地球质量

U = 1 U=1 U=1 ,代入内部第二格林公式
∭ v Δ V d v = ∬ s ∂ V ∂ n d S (1) \iiint\limits_{v}{\Delta Vdv}=\iint\limits_{s}{\frac{\partial V}{\partial n}dS} \tag{1} vΔVdv=snVdS(1)
V = W ( 重力位 ) V=W(重力位) V=W(重力位),则有
Δ W = − 4 π G ρ + 2 ω 2 \Delta W=-4\pi G\rho + 2\omega ^2 ΔW=4π+2ω2
v v v地球体积 S S S地球实际表面,则 ∂ W ∂ n = − g n \frac{\partial W}{\partial n}=-g_n nW=gn,它是地球表面 S S S法线方向重力分量

将以上条件代入(1)式:
∭ v ( − 4 π G ρ + 2 ω 2 ) d v = − ∬ s g n d S ⇒ − 4 π G ∭ v ρ d v + ∭ v 2 ω 2 d v = − ∬ s g n d S ⇒ − 4 π G M + 2 ω 2 v = − ∬ s g n d S ⇒ M = 1 4 π G ( ∬ s g n d S + 2 ω 2 v ) \iiint\limits_{v}{\left( -4\pi G\rho + 2\omega ^2\right)dv}=-\iint\limits_{s}{g_ndS} \\ \Rightarrow -4\pi G\iiint\limits_{v}{\rho dv}+\iiint\limits_{v}{2\omega ^2 dv}=-\iint\limits_{s}{g_ndS} \\ \Rightarrow -4\pi GM+2\omega ^2 v=-\iint\limits_{s}{g_ndS} \\ \Rightarrow M=\frac{1}{4 \pi G}\left(\iint\limits_{s}{g_ndS} + 2\omega ^2 v \right) v(4π+2ω2)dv=sgndS4πGvρdv+v2ω2dv=sgndS4πGM+2ω2v=sgndSM=4πG1 sgndS+2ω2v
通过这一式子,即可根据地球表面重力来计算地球质量

4.1.3 第一边值问题(Dirichlet问题)


U = 1 l , V 为质体内部的位函数 U=\frac{1}{l},V为质体内部的位函数 U=l1V为质体内部的位函数
代入内部第二格林公式
∭ v ( 1 l Δ V − V Δ 1 l ) d v = ∬ s ( 1 l ∂ V ∂ n − V ∂ ∂ n ( 1 l ) ) d S \iiint\limits_{v}{\left(\frac{1}{l}\Delta V-V\Delta \frac{1}{l}\right)dv}=\iint\limits_{s}{\left(\frac{1}{l}\frac{\partial V}{\partial n}-V\frac{\partial }{\partial n}\left( \frac{1}{l}\right)\right)dS} v(l1ΔVVΔl1)dv=s(l1nVVn(l1))dS
之前证明过, 1 l \frac{1}{l} l1是一个谐函数,即 Δ 1 l = 0 \Delta \frac{1}{l}=0 Δl1=0。又根据泊松公式 Δ V = − 4 π G ρ \Delta V=-4\pi G\rho ΔV=4π 。因此化简得:
− 4 π G ∭ v ρ l d v = ∬ s ( 1 l ∂ V ∂ n − V ∂ ∂ n ( 1 l ) ) d S -4\pi G\iiint\limits_{v}{\frac{\rho}{l}dv}=\iint\limits_{s}{\left(\frac{1}{l}\frac{\partial V}{\partial n}-V\frac{\partial }{\partial n}\left( \frac{1}{l}\right)\right)dS} 4πGvlρdv=s(l1nVVn(l1))dS
根据位函数基本公式:
V = G ∭ v ρ l d v V=G\iiint\limits_{v}{\frac{\rho}{l}dv} V=Gvlρdv
代入得:
∬ s ( 1 l ∂ V ∂ n − V ∂ ∂ n ( 1 l ) ) d S = − 4 π V (1) \iint\limits_{s}{\left(\frac{1}{l}\frac{\partial V}{\partial n}-V\frac{\partial }{\partial n}\left( \frac{1}{l}\right)\right)dS}=-4\pi V \tag{1} s(l1nVVn(l1))dS=4πV(1)
又令 u u u任意一个在外部调和、无穷远处正则的函数,代入外部第二格林公式得
∭ v ( u Δ V − V Δ u ) d v = − ∬ s ( u ∂ V ∂ n − V ∂ u ∂ n ) d S \iiint\limits_{v}{\left(u\Delta V-V\Delta u\right)dv}=-\iint\limits_{s}{\left(u\frac{\partial V}{\partial n}-V\frac{\partial u}{\partial n} \right)dS} v(uΔVVΔu)dv=s(unVVnu)dS
在外部 V V V 同样是调和函数,因此式子左边为0,即:
∬ s ( u ∂ V ∂ n − V ∂ u ∂ n ) d S = 0 (2) \iint\limits_{s}{\left(u\frac{\partial V}{\partial n}-V\frac{\partial u}{\partial n} \right)dS}=0 \tag{2} s(unVVnu)dS=0(2)
(1)(2)两式相减得:
∬ s ( ( u − 1 l ) ∂ V ∂ n − V ∂ ∂ n ( u − 1 l ) ) d S = 4 π V (3) \iint\limits_{s}{\left(\left(u-\frac{1}{l}\right)\frac{\partial V}{\partial n}-V\frac{\partial }{\partial n}\left( u-\frac{1}{l}\right)\right)dS}=4\pi V \tag{3} s((ul1)nVVn(ul1))dS=4πV(3)
引入格林函数
f G = u − 1 l f_G=u-\frac{1}{l} fG=ul1
假定 u u u S S S 面上等于 1 l \frac{1}{l} l1,则代入(3)式可得:
4 π V = − ∬ s ( V ∂ f G ∂ n ) d S (3) 4\pi V \tag{3}=-\iint\limits_{s}{\left(V\frac{\partial f_G}{\partial n}\right)dS} 4πV=s(VnfG)dS(3)
可以看到,如果已知物体表面上 v v v 的值、边界面以及 f G f_G fG 的值,可以求出外部引力位。

4.1.2 第二边值问题(Neumann问题)

类似地,假定 u u u 使得格林函数在边界面上的法向导数为0,即:
∂ f G ∂ n ∣ s = 0 \frac{\partial f_G}{\partial n}\bigg|_{s}=0 nfG s=0
依然是代入(3)式:
4 π V = ∬ s ( ∂ v ∂ n f G ) d S 4\pi V=\iint\limits_{s}{\left(\frac{\partial v}{\partial n}f_G\right)dS} 4πV=s(nvfG)dS
如果已知物体表面上 ∂ v ∂ n \frac{\partial v}{\partial n} nv 的值、边界面以及 f G f_G fG 的值,可以求出外部引力位。

4.2.3 第三边值问题(Robin问题)

一样的方法,根据边值条件来假定u:
[ α ( u − 1 l ) + β ∂ ∂ n ( u − 1 l ) ] ∣ s = 0 \left[\alpha \left( u-\frac{1}{l}\right)+\beta \frac{\partial}{\partial n}\left( u-\frac{1}{l}\right)\right]\bigg|_{s}=0 [α(ul1)+βn(ul1)] s=0
这里推导较为繁琐,懒得打了,直接从PPT里截了个图

4.2 球函数求解边值问题

4.2.1 第一边值问题(Dirichlet问题)

假设边界面是一个单位球面,位函数表示为 V ( 1 , θ , λ ) V(1,\theta,\lambda) V(1,θ,λ),此时 r = 1 r=1 r=1,则可以将其展开为面球谐函数:
V ( 1 , θ , λ ) = ∑ n = 0 ∞ Y n ( θ , λ ) V(1,\theta,\lambda)=\sum_{n=0}^{\infty}{Y_n(\theta,\lambda)} V(1,θ,λ)=n=0Yn(θ,λ)
球面之外,容易得到函数解:
V e ( r , θ , λ ) = ∑ n = 0 ∞ 1 r n + 1 Y n ( θ , λ ) V_e(r,\theta,\lambda)=\sum_{n=0}^{\infty}{\frac{1}{r^{n+1}}Y_n(\theta,\lambda)} Ve(r,θ,λ)=n=0rn+11Yn(θ,λ)
球面之内则有函数解:
V i ( r , θ , λ ) = ∑ n = 0 ∞ r n Y n ( θ , λ ) V_i(r,\theta,\lambda)=\sum_{n=0}^{\infty}{r^nY_n(\theta,\lambda)} Vi(r,θ,λ)=n=0rnYn(θ,λ)
这几个函数都收敛,并且都是谐函数,因此满足条件。

那么对于半径为 R R R 的球体,同样先展开为:
V ( R , θ , λ ) = ∑ n = 0 ∞ Y n ( θ , λ ) V(R,\theta,\lambda)=\sum_{n=0}^{\infty}{Y_n(\theta,\lambda)} V(R,θ,λ)=n=0Yn(θ,λ)
书上直接给出了面谐函数的公式(也可以通过分解公式代入求得,但我不会):
Y n ( θ , λ ) = 2 n + 1 4 π ∫ λ ′ = 0 2 π ∫ θ ′ = 0 π V ( R , θ ′ , λ ′ ) P n ( cos ⁡ ψ ) sin ⁡ θ ′ d θ ′ d λ ′ Y_n(\theta,\lambda)=\frac{2n+1}{4\pi}\int_{\lambda'=0}^{2\pi}{\int_{\theta'=0}^{\pi}{V(R,\theta',\lambda')P_n(\cos{\psi})\sin{\theta'}d\theta'd\lambda'}} Yn(θ,λ)=4π2n+1λ=02πθ=0πV(R,θ,λ)Pn(cosψ)sinθdθdλ
这里可以简单理解成将单位球面等比例缩放,将原来的 1 1 1替换为 r R \frac{r}{R} Rr ,解得面外和面内的函数为:
V e ( r , θ , λ ) = ∑ n = 0 ∞ ( R r ) n + 1 Y n ( θ , λ ) V i ( r , θ , λ ) = ∑ n = 0 ∞ ( r R ) n Y n ( θ , λ ) V_e(r,\theta,\lambda)=\sum_{n=0}^{\infty}{\left(\frac{R}{r}\right)^{n+1}Y_n(\theta,\lambda)} \\ V_i(r,\theta,\lambda)=\sum_{n=0}^{\infty}{\left(\frac{r}{R}\right)^{n}Y_n(\theta,\lambda)} Ve(r,θ,λ)=n=0(rR)n+1Yn(θ,λ)Vi(r,θ,λ)=n=0(Rr)nYn(θ,λ)
仅考虑面外部分,代入面谐函数公式:
V e ( r , θ , λ ) = ∑ n = 0 ∞ ( R r ) n + 1 2 n + 1 4 π ∫ λ ′ = 0 2 π ∫ θ ′ = 0 π V ( R , θ ′ , λ ′ ) P n ( cos ⁡ ψ ) sin ⁡ θ ′ d θ ′ d λ ′ = 1 4 π ∫ λ ′ = 0 2 π ∫ θ ′ = 0 π V ( R , θ ′ , λ ′ ) [ ∑ n = 0 ∞ ( 2 n + 1 ) ( R r ) n + 1 P n ( cos ⁡ ψ ) ] sin ⁡ θ ′ d θ ′ d λ ′ V_e(r,\theta,\lambda)=\sum_{n=0}^{\infty}{\left(\frac{R}{r}\right)^{n+1}\frac{2n+1}{4\pi}\int_{\lambda'=0}^{2\pi}{\int_{\theta'=0}^{\pi}{V(R,\theta',\lambda')P_n(\cos{\psi})\sin{\theta'}d\theta'd\lambda'}}} \\ =\frac{1}{4\pi}\int_{\lambda'=0}^{2\pi}{\int_{\theta'=0}^{\pi}{V(R,\theta',\lambda')\left[\sum_{n=0}^{\infty}{(2n+1)\left(\frac{R}{r}\right)^{n+1}P_n(\cos{\psi})}\right]\sin{\theta'}d\theta'd\lambda'}} Ve(r,θ,λ)=n=0(rR)n+14π2n+1λ=02πθ=0πV(R,θ,λ)Pn(cosψ)sinθdθdλ=4π1λ=02πθ=0πV(R,θ,λ)[n=0(2n+1)(rR)n+1Pn(cosψ)]sinθdθdλ
接下来对方括号内的值进行化简:
∑ n = 0 ∞ ( 2 n + 1 ) ( R r ) n + 1 P n ( cos ⁡ ψ ) \sum_{n=0}^{\infty}{(2n+1)\left(\frac{R}{r}\right)^{n+1}P_n(\cos{\psi})} n=0(2n+1)(rR)n+1Pn(cosψ)
根据距离倒数的展开式:
1 l = 1 r 2 + R 2 − 2 r R cos ⁡ ψ = ∑ n = 0 ∞ R n r n + 1 P n ( cos ⁡ ψ ) (1) \frac{1}{l}=\frac{1}{\sqrt{r^2+R^2-2rR\cos{\psi}}}=\sum_{n=0}^{\infty}{\frac{R^n}{r^{n+1}}P_n\left( \cos \psi \right)} \tag{1} l1=r2+R22rRcosψ 1=n=0rn+1RnPn(cosψ)(1)
左右同时对 r r r 微分得:
− 1 2 2 r − 2 R cos ⁡ ψ ( r 2 + R 2 − 2 r R cos ⁡ ψ ) 3 = − ( n + 1 ) ∑ n = 0 ∞ R n r n + 2 P n ( cos ⁡ ψ ) ⇒ r − R cos ⁡ ψ l 3 = ( n + 1 ) ∑ n = 0 ∞ R n r n + 2 P n ( cos ⁡ ψ ) (2) -\frac{1}{2}\frac{2r-2R\cos{\psi}}{\left(\sqrt{r^2+R^2-2rR\cos{\psi}}\right)^3}=-(n+1)\sum_{n=0}^{\infty}{\frac{R^n}{r^{n+2}}P_n\left( \cos \psi \right)} \\ \Rightarrow \frac{r-R\cos{\psi}}{l^3}=(n+1)\sum_{n=0}^{\infty}{\frac{R^n}{r^{n+2}}P_n\left( \cos \psi \right)} \tag{2} 21(r2+R22rRcosψ )32r2Rcosψ=(n+1)n=0rn+2RnPn(cosψ)l3rRcosψ=(n+1)n=0rn+2RnPn(cosψ)(2)
为了构造出 ( 2 n + 1 ) (2n+1) (2n+1)的形式,并且让 r , R r,R r,R 的次数都为 n + 1 n+1 n+1

( 1 ) (1) (1)式乘以 − R -R R 得:
− R l = − ∑ n = 0 ∞ ( R r ) n + 1 P n ( cos ⁡ ψ ) -\frac{R}{l}=-\sum_{n=0}^{\infty}{\left(\frac{R}{r}\right)^{n+1}P_n\left( \cos \psi \right)} lR=n=0(rR)n+1Pn(cosψ)
( 2 ) (2) (2)式乘以 2 r R 2rR 2rR 得:
2 r R ( r − R cos ⁡ ψ ) l 3 = ( 2 n + 2 ) ∑ n = 0 ∞ ( R r ) n + 1 P n ( cos ⁡ ψ ) \frac{2rR(r-R\cos{\psi})}{l^3}=(2n+2)\sum_{n=0}^{\infty}{\left(\frac{R}{r}\right)^{n+1}P_n\left( \cos \psi \right)} l32rR(rRcosψ)=(2n+2)n=0(rR)n+1Pn(cosψ)
两式相加得:
− R l 2 + 2 r R ( r − R cos ⁡ ψ ) l 3 = ( 2 n + 1 ) ∑ n = 0 ∞ ( R r ) n + 1 P n ( cos ⁡ ψ ) ⇒ − R ( r 2 + R 2 − 2 r R cos ⁡ ψ ) + 2 r R ( r − R cos ⁡ ψ ) l 3 = ( 2 n + 1 ) ∑ n = 0 ∞ ( R r ) n + 1 P n ( cos ⁡ ψ ) ⇒ R ( r 2 − R 2 ) l 3 = ( 2 n + 1 ) ∑ n = 0 ∞ ( R r ) n + 1 P n ( cos ⁡ ψ ) \frac{-Rl^2+2rR(r-R\cos{\psi})}{l^3}=(2n+1)\sum_{n=0}^{\infty}{\left(\frac{R}{r}\right)^{n+1}P_n\left( \cos \psi \right)} \\ \Rightarrow \frac{-R(r^2+R^2-2rR\cos{\psi})+2rR(r-R\cos{\psi})}{l^3}=(2n+1)\sum_{n=0}^{\infty}{\left(\frac{R}{r}\right)^{n+1}P_n\left( \cos \psi \right)} \\ \Rightarrow \frac{R(r^2-R^2)}{l^3}=(2n+1)\sum_{n=0}^{\infty}{\left(\frac{R}{r}\right)^{n+1}P_n\left( \cos \psi \right)} l3Rl2+2rR(rRcosψ)=(2n+1)n=0(rR)n+1Pn(cosψ)l3R(r2+R22rRcosψ)+2rR(rRcosψ)=(2n+1)n=0(rR)n+1Pn(cosψ)l3R(r2R2)=(2n+1)n=0(rR)n+1Pn(cosψ)
至此就已经完成了化简。将式子代入:
V e ( r , θ , λ ) = R ( r 2 − R 2 ) 4 π ∫ λ ′ = 0 2 π ∫ θ ′ = 0 π V ( R , θ ′ , λ ′ ) l 3 sin ⁡ θ ′ d θ ′ d λ ′ V_e(r,\theta,\lambda) =\frac{R(r^2-R^2)}{4\pi}\int_{\lambda'=0}^{2\pi}{\int_{\theta'=0}^{\pi}{\frac{V(R,\theta',\lambda')}{l^3}\sin{\theta'}d\theta'd\lambda'}} Ve(r,θ,λ)=4πR(r2R2)λ=02πθ=0πl3V(R,θ,λ)sinθdθdλ
这就是泊松积分式。也是Dirichlet问题的直接解。

4.2.2 第二边值问题(Neumann问题)

对于第二边值问题,基本思路和第一边值问题没有区别。简单来说,给定了什么函数值,就展开什么函数值。

第二边值问题中给定 S S S 面上法向导数 ∂ V ∂ n \frac{\partial V}{\partial n} nV,所以先将法向导数展开为面球谐函数:
( ∂ V ∂ n ) r = R = ∑ n = 0 ∞ Y n ( θ , λ ) \left( \frac{\partial V}{\partial n} \right)_{r=R}=\sum_{n=0}^{\infty}{Y_n(\theta,\lambda)} (nV)r=R=n=0Yn(θ,λ)
同时注意到,在球面上法向导数和径向梯度是相等的,即:
( ∂ V ∂ n ) r = R = ( ∂ V ∂ r ) r = R \left( \frac{\partial V}{\partial n} \right)_{r=R}=\left( \frac{\partial V}{\partial r} \right)_{r=R} (nV)r=R=(rV)r=R
因此Neumann问题变成了寻找一个表达式,使得它 r r r 微分后等于面球谐函数展开式

直接给出结果:
V e ( r , θ , λ ) = − R ∑ n = 0 ∞ ( R r ) n + 1 Y n ( θ , λ ) n + 1 V_e(r,\theta,\lambda)=-R\sum_{n=0}^{\infty}{\left( \frac{R}{r} \right)^{n+1}\frac{Y_n(\theta,\lambda)}{n+1}} Ve(r,θ,λ)=Rn=0(rR)n+1n+1Yn(θ,λ)
其正确性很容易通过求微分来验证。

4.2.3 第三边值问题(Robin问题)

第三边值问题可以用于通过重力异常确定大地水准面起伏。

仍然是将给定条件展开:
h V + k ∂ V ∂ n = ∑ n = 0 ∞ Y n ( θ , λ ) hV+k\frac{\partial V}{\partial n}=\sum_{n=0}^{\infty}{Y_n(\theta,\lambda)} hV+knV=n=0Yn(θ,λ)
直接给出结果:
V e ( r , θ , λ ) = ∑ n = 0 ∞ ( R r ) n + 1 Y n ( θ , λ ) h − ( k / R ) ( n + 1 ) V_e(r,\theta,\lambda)=\sum_{n=0}^{\infty}{\left( \frac{R}{r}\right)^{n+1}\frac{Y_n(\theta,\lambda)}{h-(k/R)(n+1)}} Ve(r,θ,λ)=n=0(rR)n+1h(k/R)(n+1)Yn(θ,λ)

4.3 Stokes定理和Stokes问题

4.3.1 Stokes定理

若已知⼀个水准面形状SS面上的位W0(或它内部所包含的物质的总质量M)及该物体绕某⼀固定轴的旋转⻆速度ω,则该水准面上及其外部空间任意点的重力位都可唯一确定,并且不需要知道物体内的质量分布情况。

4.3.2 Stokes问题

已知水准面上的重力 g g g 和重⼒位 W W W(或地球的总质量 M M M),以及地球的自转角速度 ω \omega ω,需求定水准面的形状 S S S 及其外部的重力位。

4.4 边值问题解的唯一性

外部第一格林公式
∫ v e [ u e Δ v e + D ( u e , v e ) ] d v = − ∫ σ u e ∂ v e ∂ n d σ { \int\limits_{v_e}{\left[ u_e\Delta v_e+D\left( u_e,v_e \right) \right]}dv=-\int\limits_{\sigma}{u_e\frac{\partial v_e}{\partial n}d\sigma}} ve[ueΔve+D(ue,ve)]dv=σuenvedσ
假设解不是唯一的,则在 σ \sigma σ 外有两个调和并在无穷远处正则的函数 V 1 V_1 V1 V 2 V_2 V2 同时满足 σ \sigma σ 上的边界条件,记 T = V 1 − V 2 T=V_1-V_2 T=V1V2 ,则 T T T 也是在 σ \sigma σ 外调和且在无穷远处正则的函数( Δ T ≡ 0 \Delta T\equiv 0 ΔT0 )。

将外部第一格林公式应用于 T T T,并在该式中令 u = v = T u=v=T u=v=T ,则有
∫ v e [ T Δ T + D ( T , T ) ] d v = − ∫ σ T ∂ T ∂ n d σ \int\limits_{v_e}{\left[ T\Delta T+D\left( T,T \right) \right]}dv=-\int\limits_{\sigma}{T\frac{\partial T}{\partial n}d\sigma} ve[TΔT+D(T,T)]dv=σTnTdσ
根据条件,在 v e v_e ve Δ T ≡ 0 \Delta T\equiv 0 ΔT0,在 σ \sigma σ 面上 T σ = 0 T_{\sigma}^{}=0 Tσ=0,则上式为:
∫ v e D ( T , T ) d v = 0 ⇒ ∫ v e [ ( ∂ T ∂ x ) 2 + ( ∂ T ∂ y ) 2 + ( ∂ T ∂ z ) 2 ] d v = 0 \int\limits_{v_e}{D\left( T,T \right)}dv=0\Rightarrow \int\limits_{v_e}{\left[ \left( \frac{\partial T}{\partial x} \right) ^2+\left( \frac{\partial T}{\partial y} \right) ^2+\left( \frac{\partial T}{\partial z} \right) ^2 \right]}dv=0 veD(T,T)dv=0ve[(xT)2+(yT)2+(zT)2]dv=0
要使上式成立,则必须在 σ \sigma σ 外任意点上都满足
∂ T ∂ x = ∂ T ∂ y = ∂ T ∂ z = 0 \frac{\partial T}{\partial x}=\frac{\partial T}{\partial y}=\frac{\partial T}{\partial z}=0 xT=yT=zT=0
T T T 为常数。又因为 T T T 是在无穷远处的正则函数,则 T T T 只能等于零,亦即 V 1 = V 2 V_1=V_2 V1=V2 ,证明解是唯一的。

5 地球重力场

5.1 重力和重力位

5.1.1 重力位的推导

第二章讨论了引力和引力位,而重力是引力和离心力的合力。因此先推导离心力和离心力位:

易得 向量 p = ( x , y , 0 ) p=(x,y,0) p=(x,y,0),因此有离心力 f f f 等于:
f = ω 2 p = ( ω 2 x , ω 2 y , 0 ) f=\omega^2p=(\omega^2x,\omega^2y,0) f=ω2p=(ω2x,ω2y,0)
离心力位应满足梯度等于离心力,直接给出离心力位的表达式:
Φ = 1 2 ω 2 ( x 2 + y 2 ) \varPhi=\frac{1}{2}\omega^2(x^2+y^2) Φ=21ω2(x2+y2)
则重力位表达为:
W = V + Φ = G ∭ v ρ l d v + 1 2 ω 2 ( x 2 + y 2 ) W=V+\varPhi=G\iiint\limits_v{\frac{\rho}{l}dv}+\frac{1}{2}\omega^2(x^2+y^2) W=V+Φ=Gvlρdv+21ω2(x2+y2)
还是老套路,求一下重力位的 L a p l a c e Laplace Laplace 方程值:
Δ Φ = ∂ Φ ∂ x 2 + ∂ Φ ∂ y 2 + ∂ Φ ∂ z 2 = 2 ω 2 \Delta \varPhi=\frac{\partial \varPhi}{\partial x^2}+\frac{\partial \varPhi}{\partial y^2}+\frac{\partial \varPhi}{\partial z^2}=2\omega^2 ΔΦ=x2Φ+y2Φ+z2Φ=2ω2
P o s s i o n Possion Possion 方程(这里考虑质体内部)
Δ V = − 4 π G ρ \Delta V = -4\pi G\rho ΔV=4π
得到重力位的拉普拉斯方程值:
⇒ Δ W = Δ V + Δ Φ = − 4 π G ρ + 2 ω 2 \Rightarrow \Delta W =\Delta V+\Delta \varPhi=-4\pi G\rho + 2\omega^2 ΔW=ΔV+ΔΦ=4π+2ω2
该式称为广义 Poisson 公式
比较明显的结论是:重力位在外部连续但不调和(因为离心力的存在)

5.1.2 重力的大小和方向

重力单位为 ( g a l ) (gal) (gal),在赤道上大小约为 978 g a l 978 gal 978gal,在两极大小约为 983 g a l 983gal 983gal。之前更常用的单位是牛顿 ( N ) (N) (N),其中$$

重力的方向称为铅垂方向,和该点所在的重力等位面垂直,因此铅垂线呈现为不规则的曲线

5.1.3 水准面

水准面也就是重力等位面,在水准面上,重力大小处处相等,即 W ( x , y , z ) = W 0 W(x,y,z)=W_0 W(x,y,z)=W0

大地水准面是特殊的水准面,它和全球无潮平均海水面密合,作为海拔的起算面。

虽然重力和等位面垂直似乎是个显而易见的结论,还是简单证明一下:

重力位的梯度,等于重力在该方向的分量,用微分式来表示:
d W = ∂ W ∂ x d x + ∂ W ∂ y d y + ∂ W ∂ z d z = ( ∂ W ∂ x , ∂ W ∂ y , ∂ W ∂ z ) ⋅ ( d x , d y , d z ) T l = g ⋅ d x \begin{array}{c} dW = \frac{\partial W}{\partial x}dx+\frac{\partial W}{\partial y}dy+\frac{\partial W}{\partial z}dz \\ \\ =\left( \frac{\partial W}{\partial x}, \frac{\partial W}{\partial y}, \frac{\partial W}{\partial z} \right)\cdot\left(dx,dy,dz \right)^T \\ \\l =\bold{g} \cdot \rm{d}\bold{x} \end{array} dW=xWdx+yWdy+zWdz=(xW,yW,zW)(dx,dy,dz)Tl=gdx
d x dx dx 和水准面相切 W W W为常数,则 d W = 0 ⇒ g = 0 dW=0\Rightarrow \bold{g}=0 dW=0g=0,说明重力在等位面的切线方向没有分量,因此重力方向垂直于等位面。

5.1.4 正高

从大地水准面起,沿铅垂线方向至某点的距离成为该点的正高。

从前面的经验来看,无论什么物理量,最终都归结到位函数上。正高也不例外。

沿铅垂线增高的方向取矢量 d x d\bold{x} dx,则有 ∣ d x ∣ = d H \left| dx \right|=dH dx=dH d H dH dH 和 重力 g \bold{g} g 方向相反。对重力位取微分,则有:
d W = g ⋅ d x = g ⋅ d H ⋅ cos ⁡ ( g , d x ) = − g d H dW = \bold{g}\cdot d\bold{x}=\bold{g}\cdot dH\cdot \cos(\bold{g},d\bold{x}) = -\bold{g}dH dW=gdx=gdHcos(g,dx)=gdH
或表示为:

{ g = − ∂ W ∂ H d H = − d W g \left\{ \begin{array}{c} g=-\frac{\partial W}{\partial H}\\ \\ dH=-\frac{dW}{g}\\ \end{array} \right. g=HWdH=gdW
这就建立了重力位和正高之间的数学联系。

从这个式子可以得出水准面的一些重要性质

  • 由于重力随纬度有变大的趋势,因此两个水准面之间的距离随纬度有缩小的趋势
  • 同一水准面上重力位相等,但重力大小不相等,因此 两个水准面之间的 d H dH dH 不为常数,也就是水准面之间不平行
  • 因为重力 g \bold{g} g 大小不为0,因此 d H dH dH 不为0,即水准面之间不相交

5.1.5 水准面曲率

上一部分建立了位差高差的数学关系,在几何概念和物理概念之间进行了转换。这一部分则介绍了Bruns公式的推导,它建立了垂直重力梯度水准面平均曲率的关系。

首先对于曲线 y = f ( x ) y=f(x) y=f(x),有曲率公式
κ = 1 ρ = y ′ ′ ( 1 + y ′ 2 ) 3 / 2 \kappa =\frac{1}{\rho}=\frac{y''}{(1+y'^2)^{3/2}} κ=ρ1=(1+y′2)3/2y′′
当切线平行于 x x x轴时, y ′ = 0 y'=0 y=0,则有:
κ = 1 ρ = y ′ ′ = d 2 y d x 2 \kappa =\frac{1}{\rho}=y''=\frac{d^2y}{dx^2} κ=ρ1=y′′=dx2d2y
为了求水准面的平均曲率,首先建立空间直角坐标系:

其中,原点为 P P P ,在大地水准面上,图中画出了 x − z x-z xz 平面和水准面的交线铅垂线 x − y x-y xy 平面实际上就是水准面在 P P P 点的切面。

考虑此时 x − z x-z xz 平面内的曲率,根据上面结论,就等于二阶导。将 W ( x , y , z ) = W 0 W(x,y,z)=W_0 W(x,y,z)=W0 x x x 微分得:
W x + W z d z d x = 0 W_x+W_z\frac{dz}{dx}=0 Wx+Wzdxdz=0
二次微分得(涉及复合函数求微分):
W x x + ( W x z + W z z d z d x ) d z d x + W z d 2 z d x 2 = 0 W_{xx}+(W_{xz}+W_{zz}\frac{dz}{dx})\frac{dz}{dx}+W_z\frac{d^2z}{dx^2}=0 Wxx+(Wxz+Wzzdxdz)dxdz+Wzdx2d2z=0
因为在P点有 d z d x = 0 \frac{dz}{dx}=0 dxdz=0,代入二次微分式得:
d 2 z d x 2 = W x x W z = K 1 \frac{d^2z}{dx^2}=\frac{W_{xx}}{W_z}=K_1 dx2d2z=WzWxx=K1
由于 z z z 轴在 P P P 点垂直于水准面, W z = ∂ W ∂ z = ∂ W ∂ H = − g W_z=\frac{\partial W}{\partial z}=\frac{\partial W}{\partial H}=-g Wz=zW=HW=g,得到交线的曲率为:
K 1 = − W x x g K_1=-\frac{W_{xx}}{g} K1=gWxx
同理,水准面和 y − z y-z yz平面的交线的曲率为
K 2 = − W y y g K_2=-\frac{W_{yy}}{g} K2=gWyy
定义水准面上 P P P 点的曲率为两条交线的曲率平均数,则有
J = 1 2 ( K 1 + K 2 ) = − W x x + W y y 2 g (1) J=\frac{1}{2}(K_1+K_2)=-\frac{W_{xx}+W_{yy}}{2g}\tag{1} J=21(K1+K2)=2gWxx+Wyy(1)
根据前面推导的广义 P o i s s i o n Poission Poission 公式
Δ W = W x x + W y y + W z z = − 4 π G ρ + 2 ω 2 (2) \Delta W =W_{xx}+W_{yy}+W_{zz}=-4\pi G\rho + 2\omega^2\tag{2} ΔW=Wxx+Wyy+Wzz=4π+2ω2(2)
其中考虑到:
W z z = ∂ W z ∂ z = − ∂ g ∂ z = − ∂ g ∂ H (3) W_{zz}=\frac{\partial W_z}{\partial z}=-\frac{\partial g}{\partial z}=-\frac{\partial g}{\partial H}\tag{3} Wzz=zWz=zg=Hg(3)
联立(1)(2)(3)三式,可以表示出重力梯度公式:
∂ g ∂ H = − 2 g J + 4 π G ρ − 2 ω 2 \frac{\partial g}{\partial H}=-2gJ+4\pi G\rho - 2\omega^2 Hg=2gJ+4π2ω2
上式建立了垂直重力梯度水准面平均曲率之间的联系。

5.2 引力位的球谐展开

5.2.1 引力位的球谐展开式

回忆一下母函数
1 l = ∑ n = 0 ∞ r ′ n r n + 1 P n ( cos ⁡ ψ ) \frac{1}{l}=\sum_{n=0}^{\infty}{\frac{r'^n}{r^{n+1}}P_n(\cos\psi)} l1=n=0rn+1rnPn(cosψ)
根据分解公式
P n ( cos ⁡ ψ ) = P n ( cos ⁡ θ ) P n ( cos ⁡ θ ′ ) + 2 ∑ m = 1 n ( n − m ) ! ( n + m ) ! [ R n m ( θ , λ ) R n m ( θ ′ , λ ′ ) + S n m ( θ , λ ) S n m ( θ ′ , λ ′ ) ] P_{n}\left( \cos \psi \right) =P_{n}\left( \cos \theta \right) P_{n}\left( \cos \theta ' \right) +2\sum_{m=1}^n{\frac{\left( n-m \right) !}{\left( n+m \right) !}\left[ R_{nm}\left( \theta ,\lambda \right) R_{nm}\left( \theta ',\lambda ' \right) +S_{nm}\left( \theta ,\lambda \right) S_{nm}\left( \theta ',\lambda ' \right) \right]} Pn(cosψ)=Pn(cosθ)Pn(cosθ)+2m=1n(n+m)!(nm)![Rnm(θ,λ)Rnm(θ,λ)+Snm(θ,λ)Snm(θ,λ)]
联立得:
1 l = ∑ n = 0 ∞ r ′ n r n + 1 { P n ( cos ⁡ θ ) P n ( cos ⁡ θ ′ ) + 2 ∑ m = 1 n ( n − m ) ! ( n + m ) ! [ R n m ( θ , λ ) R n m ( θ ′ , λ ′ ) + S n m ( θ , λ ) S n m ( θ ′ , λ ′ ) ] } \frac{1}{l}=\sum_{n=0}^{\infty}{\frac{r'^n}{r^{n+1}}\left\{ P_{n}\left( \cos \theta \right) P_{n}\left( \cos \theta ' \right) +2\sum_{m=1}^n{\frac{\left( n-m \right) !}{\left( n+m \right) !}\left[ R_{nm}\left( \theta ,\lambda \right) R_{nm}\left( \theta ',\lambda ' \right) +S_{nm}\left( \theta ,\lambda \right) S_{nm}\left( \theta ',\lambda ' \right) \right]}\right\} } l1=n=0rn+1rn{Pn(cosθ)Pn(cosθ)+2m=1n(n+m)!(nm)![Rnm(θ,λ)Rnm(θ,λ)+Snm(θ,λ)Snm(θ,λ)]}
第n阶引力位用勒让德函数来表示:
V n = 1 r n + 1 [ A n P n ( cos ⁡ θ ) + ∑ m = 1 n ( A n m cos ⁡ m λ + B n m sin ⁡ m λ ) P n m ( cos ⁡ θ ) ] 或者: V n = 1 r n + 1 ∑ m = 0 n [ a n m P n m ( cos ⁡ θ ) cos ⁡ m λ + b n m P n m ( cos ⁡ θ ) sin ⁡ m λ ] \begin{array}{c} V_n = \frac{1}{r^{n+1}}\left[ A_nP_n(\cos\theta)+\sum\limits_{m=1}^{n}{(A_{nm}\cos{m\lambda}+B_{nm}\sin{m\lambda})P_{nm}(\cos\theta) } \right] \\ \\ \text{或者:}V_n ={\frac{1}{r^{n+1}}\sum\limits_{m=0}^n{\left[ a_{nm}P_{nm}\left( \cos \theta \right) \cos m\lambda +b_{nm}P_{nm}\left( \cos \theta \right) \sin m\lambda \right]}} \end{array} Vn=rn+11[AnPn(cosθ)+m=1n(Anmcos+Bnmsin)Pnm(cosθ)]或者:Vn=rn+11m=0n[anmPnm(cosθ)cos+bnmPnm(cosθ)sin]
两种表达方式没有区别,因为 m = 0 m=0 m=0 sin ⁡ m λ \sin m\lambda sin 为0,也就不存在对应的系数 B n B_n Bn

对于式中的几个参数,有几个基本的概念:

  • P n ( cos ⁡ θ ) P_n(\cos\theta) Pn(cosθ)主球谐函数,或带球谐函数,即勒让德多项式
  • P n m ( cos ⁡ θ ) P_{nm}(\cos\theta) Pnm(cosθ):缔和勒让德函数
  • P n m ( cos ⁡ θ ) cos ⁡ m λ P_{nm}(\cos\theta)\cos{m\lambda} Pnm(cosθ)cos P n m ( cos ⁡ θ ) sin ⁡ m λ P_{nm}(\cos\theta)\sin{m\lambda} Pnm(cosθ)sin:缔和球谐函数,或面球谐函数
  • A n , A n m , B n m A_n, A_{nm},B_{nm} An,Anm,BnmStokes系数

这里给出Stokes系数的计算公式(可利用面谐函数正交性求解):
A n 0 = G ∭ e a r t h r ′ n P n ( cos ⁡ θ ) d M = G ∭ e a r t h z ′ d M A n m = 2 ( n − m ) ! ( n + m ) ! G ∭ e a r t h r ′ n R n m ( θ ′ , λ ′ ) d M = G ∭ e a r t h z ′ d M B n m = 2 ( n − m ) ! ( n + m ) ! G ∭ e a r t h r ′ n S n m ( θ ′ , λ ′ ) d M = G ∭ e a r t h z ′ d M \begin{array}{c} A_{n0}=G\iiint_{earth}{r'^nP_n(\cos\theta)dM}=G\iiint_{earth}{z'dM} \\ \\ A_{nm}=2\frac{(n-m)!}{(n+m)!}G\iiint_{earth}{r'^nR_{nm}(\theta ',\lambda ')dM}=G\iiint_{earth}{z'dM} \\ \\ B_{nm}=2\frac{(n-m)!}{(n+m)!}G\iiint_{earth}{r'^nS_{nm}(\theta ',\lambda ')dM}=G\iiint_{earth}{z'dM} \end{array} An0=GearthrnPn(cosθ)dM=GearthzdMAnm=2(n+m)!(nm)!GearthrnRnm(θ,λ)dM=GearthzdMBnm=2(n+m)!(nm)!GearthrnSnm(θ,λ)dM=GearthzdM

5.2.2 矩

是物理中的概念,这里引入是为了表达引力位展开式低阶项的物理意义

定义:质体的质量与(到某点、某轴或某平面)距离d的k次方的乘积的物理量统称为矩。

将质体的k阶矩表示为:
∭ v d k d m \iiint\limits_{v}{d^kdm} vdkdm
值得注意的是,这里的距离d可以是到点或线或面

而低阶矩本身就具有一些性质:

  • 零阶矩
    ∭ v d 0 d m = ∭ v d m = M \iiint\limits_{v}{d^0dm}=\iiint\limits_{v}{dm}=M vd0dm=vdm=M
  • 到坐标平面的一阶矩
    ∭ v x 1 d m = ∭ v x ⋅ d m = x c M 其中 x c 表示质体质心的横坐标,对于 y , z 同理 \begin{array}{c} \iiint\limits_{v}{x^1dm}=\iiint\limits_{v}{x·dm}=x_cM \\ \\ \text{其中}x_c表示质体质心的横坐标,对于y,z同理 \end{array} vx1dm=vxdm=xcM其中xc表示质体质心的横坐标,对于y,z同理
    二阶矩则和转动惯量等有关,这里不再赘述。重点在于引力位低阶项的物理含义。

5.2.3 引力位低阶项物理含义

  • 零阶项:取 n = 0 n=0 n=0,得
    V 0 = A 0 r = 1 r G ∭ e a r t h r ′ 0 P 0 ( cos ⁡ θ ′ ) d M = G M r V_0=\frac{A_0}{r}=\frac{1}{r}G\iiint_{earth}{r'^0P_0\left( \cos \theta ' \right) dM}=\frac{GM}{r} V0=rA0=r1Gearthr′0P0(cosθ)dM=rGM
    这表示了将地球质量全部集中在地球质心上所产生的引力位,因此零阶项与地球质量有关

  • 一阶项:取 n = 1 n=1 n=1,得
    V 1 = 1 r 2 [ A 1 P 1 ( cos ⁡ θ ) + A 11 R 11 + B 11 S 11 ] = 1 r 2 [ A 1 cos ⁡ θ + A 11 sin ⁡ θ cos ⁡ λ + B 11 sin ⁡ θ sin ⁡ λ ] V_1=\frac{1}{r^2}\left[ A_1P_1\left( \cos \theta \right) +A_{11}R_{11}+B_{11}S_{11} \right] =\frac{1}{r^2}\left[ A_1\cos \theta +A_{11}\sin \theta \cos \lambda +B_{11}\sin \theta \sin \lambda \right] V1=r21[A1P1(cosθ)+A11R11+B11S11]=r21[A1cosθ+A11sinθcosλ+B11sinθsinλ]
    其中
    A 1 = G ∭ e a r t h r ′ 1 P 1 ( cos ⁡ θ ′ ) d M = G ∭ e a r t h z ′ d M A 11 = G ∭ e a r t h r ′ 1 R 11 ( cos ⁡ θ ′ ) d M = G ∭ e a r t h x ′ d M B 11 = G ∭ e a r t h r ′ 1 S 11 ( cos ⁡ θ ′ ) d M = G ∭ e a r t h y ′ d M \begin{array}{c} A_1=G\iiint_{earth}{r'^1P_1\left( \cos \theta ' \right) dM}=G\iiint_{earth}{z'dM} \\ \\ A_{11}=G\iiint_{earth}{r'^1R_{11}\left( \cos \theta ' \right) dM}=G\iiint_{earth}{x'dM} \\ \\ B_{11}=G\iiint_{earth}{r'^1S_{11}\left( \cos \theta ' \right) dM}=G\iiint_{earth}{y'dM} \end{array} A1=Gearthr′1P1(cosθ)dM=GearthzdMA11=Gearthr′1R11(cosθ)dM=GearthxdMB11=Gearthr′1S11(cosθ)dM=GearthydM
    容易看到,一阶项和地球质心坐标有关。因此,若将坐标原点选在重心,则三个系数全为零,即一阶项为0

  • 二阶项:取 n = 2 n=2 n=2,得
    V 2 = 1 r 3 [ A 2 P 2 ( cos ⁡ θ ) + A 21 R 21 ( cos ⁡ θ ) + B 21 S 21 ( cos ⁡ θ ) + A 22 R 22 ( cos ⁡ θ ) + B 22 S 22 ( cos ⁡ θ ) ] V_2=\frac{1}{r^3}\left[ A_2P_2\left( \cos \theta \right) +A_{21}R_{21}\left( \cos \theta \right) +B_{21}S_{21}\left( \cos \theta \right) +A_{22}R_{22}\left( \cos \theta \right) +B_{22}S_{22}\left( \cos \theta \right) \right] V2=r31[A2P2(cosθ)+A21R21(cosθ)+B21S21(cosθ)+A22R22(cosθ)+B22S22(cosθ)]
    二阶项系数为:
    A 2 = G ∭ e a r t h r ′ 2 P 1 ( cos ⁡ θ ′ ) d M = G ∭ e a r t h ( − x ′ 2 − y ′ 2 + 2 z ′ 2 ) d M A 21 = 1 3 G ∭ e a r t h r ′ 2 R 21 ( cos ⁡ θ ′ ) d M = G ∭ e a r t h x ′ z ′ d M B 21 = 1 3 G ∭ e a r t h r ′ 2 S 21 ( cos ⁡ θ ′ ) d M = G ∭ e a r t h y ′ z ′ d M A 22 = 1 12 G ∭ e a r t h r ′ 2 R 22 ( cos ⁡ θ ′ ) d M = G ∭ e a r t h ( x ′ 2 − y ′ 2 ) d M B 22 = 1 12 G ∭ e a r t h r ′ 2 S 21 ( cos ⁡ θ ′ ) d M = G ∭ e a r t h x ′ y ′ d M \begin{array}{c} A_2=G\iiint_{earth}{r'^2P_1\left( \cos \theta ' \right) dM}=G\iiint_{earth}{(-x'^2-y'^2+2z'^2)dM} \\ \\ A_{21}=\frac{1}{3}G\iiint_{earth}{r'^2R_{21}\left( \cos \theta ' \right) dM}=G\iiint_{earth}{x'z'dM} \\ \\ B_{21}=\frac{1}{3}G\iiint_{earth}{r'^2S_{21}\left( \cos \theta ' \right) dM}=G\iiint_{earth}{y'z'dM} \\ \\ A_{22}=\frac{1}{12}G\iiint_{earth}{r'^2R_{22}\left( \cos \theta ' \right) dM}=G\iiint_{earth}{(x'^2-y'^2)dM} \\ \\ B_{22}=\frac{1}{12}G\iiint_{earth}{r'^2S_{21}\left( \cos \theta ' \right) dM}=G\iiint_{earth}{x'y'dM} \end{array} A2=Gearthr′2P1(cosθ)dM=Gearth(x′2y′2+2z′2)dMA21=31Gearthr′2R21(cosθ)dM=GearthxzdMB21=31Gearthr′2S21(cosθ)dM=GearthyzdMA22=121Gearthr′2R22(cosθ)dM=Gearth(x′2y′2)dMB22=121Gearthr′2S21(cosθ)dM=GearthxydM
    其中xy,xz,yz形式的积分,是一种二阶矩惯性积。当坐标轴和主惯性轴重合,它们就为零。

但对于地球而言,需要比较多的条件才能使得它们全为零。一般来说,在地球坐标系下,所有的一阶谐函数和二阶一次谐函数在展开式中都默认为零,也被称为禁止的或不容许的谐函数。

5.3 正常重力

这一块内容相对轻松,主要以概念为主。

5.3.1 引入正常重力场的意义

引⼊⼀个近似的地球重⼒位,它函数关系简单,⾮常接近真实的地球重⼒位,称为正常重⼒位,记为 U U U。这样就将地球重力场的求解归结为扰动场或异常重力场(微小量)的求解,保证了其解的存在性,并方便求解

5.3.2 确定正常重力位的方法

  • Laplace方法
    • 将地球重力位 W W W 展开为球谐级数
    • 保留前面最大的几项作为正常重力
    • 选取一个正常重力位水准面,假设它是产生正常重力位的质体的表面,则正常重力场就理解为该质体产生的重力场
  • Stokes方法
    • 选择一个形状大小已知的质体(一般为旋转椭球体)
    • 根据质体的总质量和旋转角速度,解其形成的外部重力位
    • 以此重力位为正常重力位

5.3.3 正常椭球

  • 基本要求
    • 质量和角速度等于地球总质量和旋转角速度,旋转轴和地球自转轴重合
    • 椭球表面为水准面 W = W 0 W=W_0 W=W0,且外部没有物质存在
    • 椭球中心与地球质心重合
  • 基本参数(任选四个可以确定正常重力场)
    • U 0 U_0 U0:椭球表面上的正常重力位
    • A 0 = G M A_0=GM A0=GM
    • A 2 = G ( A − C ) A_2=G(A-C) A2=G(AC)
    • ω \omega ω:自转角速度
    • f = a − b a f=\frac{a-b}{a} f=aab:椭球扁率
    • f ∗ = γ b − γ a γ a f^*=\frac{\gamma_b-\gamma_a}{\gamma_a} f=γaγbγa:正常重力扁率
    • γ a \gamma_a γa:赤道上正常重力

5.4 扰动重力

5.4.1 定义

真实重力位和正常重力位之差,表示为 T T T
W ( x , y , z ) = U ( x , y , z ) + T ( x , y , z ) W(x,y,z)=U(x,y,z)+T(x,y,z) W(x,y,z)=U(x,y,z)+T(x,y,z)

5.4.2 大地水准面高

将大地水准面上一点 P P P 沿参考椭球面的法线 n ′ n' n 投影到椭球面(正常重力)上的 Q Q Q 点,距离 P Q PQ PQ 就称为大地水准面高,用 N N N 表示,如图所示:

5.4.3 重力异常

P P P 点的重力矢量 g P \bold{g}_P gP Q Q Q 点的正常重力矢量 γ Q \gamma_Q γQ 之差称为重力异常矢量

两者的大小(模)的差称为重力异常

5.4.4 垂线偏差

观测点处垂线椭球面法线的夹角称为垂线偏差

计算公式:
{ ξ = Φ − φ η = ( Λ − λ ) cos ⁡ φ \left\{ \begin{array}{c} \xi =\varPhi -\varphi\\ \eta =\left( \varLambda -\lambda \right) \cos \varphi\\ \end{array} \right. {ξ=Φφη=(Λλ)cosφ

5.4.5 重力扰动

重力扰动和重力异常不同之处在于:重力扰动在同一点上比较。定义为:

在大地水准面上同一点 P P P 比较重力矢量 g P \bold{g}_P gP 和正常重力矢量 γ P \gamma_P γP,得到重力扰动矢量

两者大小之差为重力扰动

重力扰动矢量的方向和垂线偏差一样

5.5 Bruns公式

Bruns公式表示为:
N = T γ N=\frac{T}{\gamma} N=γT

5.5.1 推导

还是这张图。由正常重力的定义,对于 P P P 点有:
W P = U P + T P W_P=U_P+T_P WP=UP+TP
P Q PQ PQ 的正常重力位之差可以表示为正常重力在 N N N 上做的功。因此有关系式:
U P = U Q + ( ∂ U ∂ n ) Q N = U Q − γ N U_P=U_Q+\left( \frac{\partial U}{\partial n}\right)_QN=U_Q-\gamma N UP=UQ+(nU)QN=UQγN
又根据水准面定义:
W P = U Q = W 0 W_P=U_Q=W_0 WP=UQ=W0
将三式联立得到Bruns公式:
N = U Q − U P γ = W P − U P γ = T γ N=\frac{U_Q-U_P}{\gamma}=\frac{W_P-U_P}{\gamma}=\frac{T}{\gamma} N=γUQUP=γWPUP=γT

5.6 物理大地测量学基本方程式

对于 P P P 点,其扰动重力定义为:
δ g = g P − γ P (1) \delta g = g_P-\gamma_P\tag{1} δg=gPγP(1)
和Bruns公式推导一样,其正常重力可以表示为:
γ P = γ Q + ∂ γ ∂ h N (2) \gamma_P=\gamma_Q+\frac{\partial \gamma}{\partial h}N\tag{2} γP=γQ+hγN(2)
联立(1)(2)得:
δ g = g P − γ Q − ∂ γ ∂ h N (3) \delta g = g_P-\gamma_Q-\frac{\partial \gamma}{\partial h}N\tag{3} δg=gPγQhγN(3)
又有重力异常的定义为:
Δ g = g P − γ Q (4) \Delta g = g_P-\gamma_Q\tag{4} Δg=gPγQ(4)
代入(3)式得:
δ g = Δ g − ∂ γ ∂ h N (5) \delta g=\Delta g-\frac{\partial \gamma}{\partial h}N\tag{5} δg=ΔghγN(5)
根据Bruns公式 N = T γ N=\frac{T}{\gamma} N=γT,将式子中的 N N N 替换,得到
δ g = Δ g − ∂ γ ∂ h T γ (6) \delta g=\Delta g-\frac{\partial \gamma}{\partial h}\frac{T}{\gamma}\tag{6} δg=ΔghγγT(6)
将重力扰动表示为扰动位的梯度,并近似处理:
δ g = − ∂ T ∂ n ≈ − ∂ T ∂ h (7) \delta g=-\frac{\partial T}{\partial n}\approx -\frac{\partial T}{\partial h}\tag{7} δg=nThT(7)
代入(6)式得到物理大地测量学基本方程式
− ∂ T ∂ h = Δ g − ∂ γ ∂ h T γ (6) -\frac{\partial T}{\partial h}=\Delta g-\frac{\partial \gamma}{\partial h}\frac{T}{\gamma}\tag{6} hT=ΔghγγT(6)
该式建立了扰动位、正常重力和重力异常之间的关联。

5.7 Possion积分(内涵)

Possion积分公式说明了空间点上谐函数的值可以由边界面上的值来确定,因此是一个将谐函数由边界向上延拓的方法

5.8 改进的Poisson积分(内涵)

改进的Poisson积分公式去掉了零阶项和一阶项,使得计算更加简便。

对于重力异常来说,重力异常并不是一个谐函数,需要乘以r构造成谐函数 r Δ g r \Delta g rΔg
将此谐函数展开后,应用改进的Poisson积分,即可由地面重力异常求出地球外部重力异常

5.9 Stokes公式

N = R 4 π γ 0 ∬ σ Δ g S ( ψ ) d σ N=\frac{R}{4\pi \gamma_0}\iint\limits_{\sigma}{\Delta gS(\psi)d\sigma} N=4πγ0RσΔgS(ψ)dσ
Stokes公式是目前为止物理大地测量最重要的公式,它可以根据重力异常来确定大地水准面

6 重力归算

尽管Stokes公式似乎把问题变得很简单,但想要确定重力异常,需要的是大地水准面上的重力值。现实情况下,我们只能得到地表的重力值。另外,Stokes公式中大地水准面外必须无质量,而事实上并非如此。

重力归算的任务就是将大地水准面外部的质量去掉(或移到大地水准面以内),再将重力点从地面归算到大地水准面

6.1 空间改正

6.1.1 定义

空间改正,就是将海拔高程为 H H H 的重力点的重力观测值 g g g,归算到大地水准面的重力观测值 g 0 g_0 g0,归算时不考虑地面和大地水准面间的质量影响,只考虑高度对重力的改正

6.1.2 推导

空间改正中的不考虑地面和大地水准面间的质量影响,指的是将所有质量压入到大地水准面内。

对于地面上 P P P 点的引力:
g = G M ( R + H ) 2 (1) g=G\frac{M}{(R+H)^2}\tag{1} g=G(R+H)2M(1)
对于大地水准面上对应的 P 0 P_0 P0点:
g 0 = G M R 2 (2) g_0=G\frac{M}{R^2}\tag{2} g0=GR2M(2)
注意一下符号问题:地面上观测值+改正值=大地水准面上值。因此改正值为:
Δ 1 g = g 0 − g = G M R 2 − G M ( R + H ) 2 = G M [ 1 R 2 − 1 ( R + H ) 2 ] = G M R 2 [ 1 − 1 ( 1 + H R ) 2 ] (3) \Delta_1 g=g_0-g=G\frac{M}{R^2}-G\frac{M}{(R+H)^2}=GM\left[\frac{1}{R^2}-\frac{1}{(R+H)^2} \right]=\frac{GM}{R^2}\left[1-\frac{1}{(1+\frac{H}{R})^2} \right]\tag{3} Δ1g=g0g=GR2MG(R+H)2M=GM[R21(R+H)21]=R2GM[1(1+RH)21](3)
可以看到式子中能够提出 G M R 2 \frac{GM}{R^2} R2GM,记作 γ \gamma γ,并将 1 ( 1 + H R ) 2 \frac{1}{(1+\frac{H}{R})^2} (1+RH)21 级数展开得:
Δ 1 g = γ [ 1 − ( 1 − 2 H R + 3 H 2 R 2 ) ] = 2 γ R H − 3 γ R 2 H 2 = 0.3086 H − 0.72 × 1 0 − 7 H 2 ( m G a l ) (4) \Delta_1 g=\gamma\left[1-\left( 1-\frac{2H}{R}+\frac{3H^2}{R^2} \right) \right]=2\frac{\gamma}{R}H-3\frac{\gamma}{R^2}H^2=0.3086H-0.72\times 10^{-7}H^2(mGal)\tag{4} Δ1g=γ[1(1R2H+R23H2)]=2RγH3R2γH2=0.3086H0.72×107H2(mGal)(4)
另一种方法推导更为简单:
根据泰勒级数展开,并保留线性部分得:
g 0 = g − ∂ g ∂ H H g_0=g-\frac{\partial g}{\partial H}H g0=gHgH
根据近似关系:
− ∂ g ∂ H ≈ − ∂ γ ∂ h = + 0.3086 H ( m G a l ) -\frac{\partial g}{\partial H}\approx-\frac{\partial \gamma}{\partial h}=+0.3086H(mGal) Hghγ=+0.3086H(mGal)
即完成了推导。

6.1.3 空间重力异常

空间重力异常记作:
Δ g 空 = g + Δ 1 g − γ \Delta g_{\text{空}}=g+\Delta_1g- \gamma Δg=g+Δ1gγ

6.2 层间改正

6.2.1 定义

层间改正又称中间层改正。设地球表面和大地水准面均为平面。那么两平面之间的质量对两个面上点的重力存在着影响、去掉这部分质量引起的重力改正称为层间改正

6.2.2 推导

这里的过程不过多展开,实际上就是求圆柱体对轴线上点的引力。需要注意的是,圆柱体的半径a在这里趋近于无穷大,从而接近地球表面。

布格片引力表示为:
A B = 2 π G ρ H A_B=2\pi G\rho H AB=2πH
代入标准密度 ρ = 2.67 g / c m 3 \rho=2.67g/cm^3 ρ=2.67g/cm3 时,得:
A B = 0.1119 H ( m G a l ) A_B=0.1119 H(mGal) AB=0.1119H(mGal)

6.2.3 符号

在层间改正中,去掉了布格片质量影响,使得重力值减小,因此改正值为负。得到层间改正表达式为:
Δ 2 g = − 0.1119 H ( m G a l ) \Delta_2g=-0.1119 H(mGal) Δ2g=0.1119H(mGal)

6.3 地形改正

6.3.1 定义

在层间改正的基础上,考虑地形不是平面的情况,需要将 I I I 区的质量补充进 I I II II 区,以补偿被多余去掉的质量。

局部地形改正定义为:计算点周围地形起伏的质量对计算点重力值的影响,记作 Δ 3 g \Delta_3g Δ3g

6.3.2 符号

在局部地形改正中,仅考虑局部地形的影响。在挖空的 I I II II 区补进质量,会使得重力值变大;在多余的 I I I 区挖去质量,同样会使得重力值变大。因此符号为正。

6.4 各种改正的定义

  • 简单布格改正:空间改正+层间改正
  • 布格改正:空间改正+层间改正+局部地形改正
  • 法耶改正:空间改正+局部地形改正

对应的有布格重力异常简单布格重力异常法耶重力异常,不再赘述,通用的公式是重力+对应改正-正常重力

6.5 地形均衡理论

在前面的改正中,都假设了地球的密度均匀,导致布格异常在地形起伏的地方存在系统的误差。因此针对地形对密度的影响,提出了普拉特均衡模型艾里均衡模型

6.5.1 普拉特均衡模型

6.5.1.1 主要思想

认为在地下某深度有一个补偿面(海水面和补偿面距离几乎处处相等),在补偿面之上,将地壳分割成截面相同的柱体,超出海平面的山区柱体密度小,低于海平面的海底柱体密度大,但柱体质量相等

6.5.1.2 密度计算

设海平面到补偿面距离为 D D D,山体柱体高出海平面的高度记为 H H H,海底柱体低于海平面的高度记为 H ′ H' H。当 H = 0 H=0 H=0时柱体密度记为 ρ 0 = 2.67 g / c m 3 \rho_0=2.67 g/cm^3 ρ0=2.67g/cm3(也就是标准密度的值)

对于陆地:
( D + H ) ρ = D ρ 0 (D+H)\rho=D\rho_0 (D+H)ρ=Dρ0
对于海洋(额外考虑海水密度 ρ w \rho_w ρw):
( D − H ′ ) ρ + H ′ ρ w = D ρ 0 (D-H')\rho+H'\rho_w=D\rho_0 (DH)ρ+Hρw=Dρ0

PPT上还介绍了一种将海平面以上和以下的密度区分开的模型(如下图),但书上没有,这里就不写了。

6.5.2 艾里均衡模型

6.5.2.1 主要思想

艾里均衡模型认为地壳由厚度不同的轻的岩石组成,各个柱体漂浮在密度较大的岩浆之上。
每个柱体的密度相同,并且露出岩浆和陷入岩浆的部分是相对应的。凸起部分越高,陷入部分也越深

6.5.2.2 密度计算

假定山体的密度为 ρ 0 = 2.67 g / c m 3 \rho_0=2.67 g/cm^3 ρ0=2.67g/cm3,下层岩浆密度为 ρ 1 = 3.27 g / c m 3 \rho_1=3.27 g/cm^3 ρ1=3.27g/cm3

对于山体,其陷入岩浆部分长度为 t t t,则根据浮力平衡原理:
t ρ 1 = H ρ 0 + t ρ 0 ⇒ t Δ ρ = H ρ 0 t\rho_1=H\rho_0+t\rho_0 \Rightarrow t\Delta\rho=H\rho_0 tρ1=Hρ0+tρ0tΔρ=Hρ0
因此得到 t t t 的值为:
t = H ρ 0 Δ ρ = 4.45 H t=\frac{H\rho_0}{\Delta\rho}=4.45H t=ΔρHρ0=4.45H
对于海洋,则有
t ′ Δ ρ = H ′ ( ρ 0 − ρ w ) ⇒ t ′ = ρ 0 − ρ w ρ 1 − ρ 0 H ′ = 2.73 H ′ t'\Delta\rho=H'(\rho_0-\rho_w) \Rightarrow t'=\frac{\rho_0-\rho_w}{\rho_1-\rho_0}H'=2.73H' tΔρ=H(ρ0ρw)t=ρ1ρ0ρ0ρwH=2.73H

6.5.3 均衡改正

6.5.3.1 定义

依据某种均衡模型(可以是普拉特也可以是艾里-海斯卡涅)调整地壳,最后结果是一个想象的密度为 ρ 0 \rho_0 ρ0均匀地壳,它并不像布格改正一样完全去掉地形质量,而是将这些质量移到大地水准面内部,从而弥补山下的质量亏损,使得密度均衡。

均衡改正包括三个步骤

  1. 移去地形部分
  2. 移去补偿部分
  3. 加上空间改正,归化到大地水准面上
6.5.3.2 均衡重力异常

均衡重力异常=重力值+空间改正+层间改正+局部地形改正+均衡改正-正常重力

6.6 重力归算总结

6.6.1 重力归算的目的

  • 求定大地水准面
  • 内插和外推重力值
  • 研究地壳

6.6.2 重力归算的基本要求

  • 大地水准面的外部没有质量
  • 不改变地球质心的位置,即满足椭球体和大地水准面质心重合的条件
  • 地球的总质量不变
  • 不改变大地水准面的形状

6.6.3 重力归算的步骤

  • 移去地形质量部分(层间改正、地形改正)
  • 移去补偿质量部分(均衡改正)
  • 加空间改正归化到大地水准面上(空间改正)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值